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Abstract

The change detection paradigm has been a widely used approach for measuring capacity in visual working memory (WM). In this
task, subjects see an array of visual items, followed by a short blank delay and a single test item. Their task is to indicate whether
that test item changed relative to the item in the sample array. This task provides reliable measurements of WM capacity that
exhibit robust correlations with many outcome variables of interest. Here, we offer a new variant of this task that we call "change
localization." This task is closely modeled after the change detection task described above, except that the test array contains the
same number of items as the sample array, and one item has always changed in each trial. The subject's task is to select the
changed item in the test array. Using both color and shape stimuli, scores in the change localization task were highly correlated
with those in the change detection task, suggesting that change localization taps into the same variance in WM ability. Moreover,
the change localization task was far more reliable than change detection, such that only half the number of trials were required to
achieve robust reliability. To further validate the approach, we replicated known effects from the literature, demonstrating that
they could be detected with far fewer trials than with change detection. Thus, change localization provides a highly reliable and

sensitive approach for measuring visual working memory capacity.
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Introduction

Individual differences in visual working memory (WM) ca-
pacity predict a wide range of cognitive abilities, such as ver-
bal memory encoding (Miller et al., 2019), mathematical rea-
soning (Raghubar et al., 2010), and fluid intelligence
(Unsworth et al., 2014). Thus, there is clear motivation to
develop robust and reliable behavioral measures of this cog-
nitive ability. One influential approach is the so-called
“change detection” procedure used by Luck and Vogel
(1997) to measure capacity limits in visual WM. In this task,
subjects are shown an array of colored squares, and then de-
cide whether any item has changed in a test display that is
presented after a brief blank delay period. Change detection

P4 Chong Zhao
chongzhao @uchicago.edu

Department of Psychology, University of Chicago,
Chicago, Illinois 60637, USA

Institute for Mind and Biology, University of Chicago,
Chicago, Illinois 60637, USA

Published online: 13 October 2022

has been shown to provide highly reliable measurements of
individual differences in WM capacity (Xu et al., 2018), and
has helped to reveal the links between WM ability and varia-
tions in attentional control, fluid intelligence, and long-term
memory access (Unsworth et al., 2014). Nevertheless, we ar-
gue here that a small modification of this procedure — from
change detection to change /ocalization — may provide sub-
stantial improvements in reliability and sensitivity. In turn,
this may allow more efficient and higher quality tracking of
WM capacity across different experimental conditions.

Our examination of change localization was motivated by a
past study (Pailian & Halberda, 2015) that had found evidence
of higher reliability in a task that required observers to localize
the changed item. Here, we collected a much larger sample size
that enabled a comprehensive analysis of how reliability in these
tasks varies as a function of the number of subjects and trials. In
our change localization task, one item changed in every test
display, and observers localized that item. Because there is no
threshold for detecting changes, this measure removes concerns
about response bias, a factor that can reduce the precision of
capacity estimates (Williams et al., 2022). In addition, because
chance performance is lower for change localization (1/6) than
for change detection (1/2), change localization provides a greater
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dynamic range for performance; this provides a better testbed for
examining individual differences in working memory capacity.
Finally, in addition to characterizing the reliability of the tasks,
we carried out a direct comparison of their relative sensitivity to
known empirical patterns.

To anticipate our findings, we observed a strong correlation
between change localization and change detection scores, sug-
gesting that change localization taps into the same capacity
construct. Second, we used a downsampling approach to de-
termine the number of trials and subjects needed to achieve
high reliability (Xu et al., 2018). This analysis revealed a sub-
stantial advantage in reliability for change localization com-
pared to change detection, such that only half as many trials
of change localization were required to achieve the same reli-
ability scores. Finally, change localization required far fewer
trials to detect known empirical patterns from the change de-
tection literature, suggesting that this new task may provide a
more efficient approach for a wide range of questions.

Experiment 1
Method
Participants

One hundred participants were recruited at the rate of $9.50
per hour from Prolific, an online platform for participant re-
cruitment. All participants were 18-35 years old, currently
lived in the USA, had normal or corrected-to-normal vision,
and had no ongoing psychological or neurological disorders.

Stimuli

In both of our visual working memory tasks, all stimuli were
colored squares generated in Javascript using the jsPsych
canvas-keyboard interface. The colored squares were all in
40 x 40 pixel size on a 400 x 400 pixel canvas page. Color
squares could appear anywhere within a circular area of the
monitor within 30-200 pixels from the center of the canvas
screen. Each square could appear in one of the nine distinct
colors with no repetitions within any trial (RGB values: red =
25500; green=0255 0; blue=0 0 255; magenta =255 0 255;
yellow = 255 255 0; cyan = 0 255 255; orange = 255 128 0;
white = 255 255 255; black = 0 0 0). Participants were
instructed to fixate at a small black plus (30 px in Arial) at
the center of the screen throughout the trial.

Procedures
Change detection In each trial, six colored squares appeared

on the screen simultaneously for 250 ms, followed by a 1,000-
ms blank retention interval. Then, one colored square
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appeared and participants indicated whether the color of this
square had changed compared to the square previously pre-
sented in that position. Changes occurred with a probability of
0.5. Each participant completed 240 trials of the change de-
tection task in total (see Fig. 1 Upper).

Change localization In each trial, six colored squares appeared
simultaneously for 250 ms, followed by a 1,000-ms blank
retention interval. Then, the six squares were presented again
in the same locations, with one of the six colors changed to a
color that had not been presented in the trial. Each square was
marked with a digit (from 1 to 6), and participants pressed the
corresponding key to indicate the item that had changed color.
The spatial position of the six numbers was randomized across
trials. Each participant completed 240 trials of the change
localization task in total (see Fig. 1 Lower).

Results

The mean K capacity estimates using the change detection
paradigm was 2.45, similar to the K scores in previous litera-
tures (Balaban et al., 2019). In our change localization para-
digm, the mean accuracy was 58.6%, much higher than the
statistical chance at 16.67%. To test the reliability of each
paradigm, we performed an odd-even split-half analysis.
This analysis revealed that the change detection paradigm
had a high internal reliability (#(99) = 0.87, p = 2.19 x
107%). Similarly, the change localization paradigm also exhib-
ited a high internal reliability (#(99) = 0.93, p = 1.38 x 10™*%).
We then examined if change localization accounted for the
same variance in visual working memory as change detection.
A strong correlation between the two tasks suggested that they
were tapping into a common memory ability (#(99) = 0.82, p =
1.55x 10, see Fig. 2).

Change localization paradigm was statistically more reliable
than change detection paradigm

To compare the reliability of change detection and change lo-
calization, we performed iterative down-sampling on the split-
half correlations of the two paradigms. First, we down-sampled
trials and subjects from the whole dataset, starting from the
smallest number and increasing until the whole sample was
used. Then, we could calculate, for each unique combination
of subject and trial numbers, the reliability metric within these
smaller samples. This analysis reveals the lowest possible num-
bers of subjects and trials that are needed to achieve a given level
of reliability. We ran 100 iterations for each combination of trials
and subject numbers. We randomly sampled the number of
subjects from five to 100 in steps of five, and the number of
trials from five to 200 in steps of five. One obvious result ob-
served from the down-sampling figures was that change
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Task A: Simultaneous Change Detection Paradigm (240 trials)

500 ms
ITI

250 ms stimulus
set size 6

1000 ms
Retention Interval

Until Response
Change or No Change

Task B: Simultaneous Change Localization Paradigm (240 trials)

500 ms
ITI

250 ms stimulus
set size 6

Fig. 1 The change detection paradigm and change localization paradigms
used in Exp 1. (Upper) A sample of set size 6 simultaneous change
detection paradigm. Six colored squares appeared on the screen simulta-
neously. At the end of the trial, participants were cued with a square at one
of the six original locations, with 50% exhibited a color change and 50%
without change. (Lower) A sample of the change localization paradigm.

localization required a smaller number of trials and subjects to
reach statistical reliability, as illustrated by the broader swath of
green in the change localization compared to the change detec-
tion figure (see Fig. 3a and b). To better quantify the advantage
of change localization on reliability, we calculated the minimum
number of trials required to reach a Spearman-Brown correlation
of 0.8 in each paradigm. With more than 20 subjects, change
localization required only half the number of trials that were
required with change detection (see Fig. 3c).

>

0.2

Change detection even trial capacity (K)
Change localization even trial accuracy

Change detection odd trial capacity (K)

Fig. 2 Change detection and change localization paradigms both had
high reliability. a An odd-even split-half analysis revealed that the change
detection paradigm had a high internal reliability, with a Pearson corre-
lation 0of 0.87. b An odd-even split-half analysis suggested that the change

Change localization odd trial accuracy

1000 ms
Retention Interval

Until Response
Which square changed
its color

Six colored squares appeared on the screen simultaneously. At the end of
the trial, participants were cued with six squares at the original locations
as the study phase. One of the squares would change its color, and par-
ticipants need to report which one changed its color by pressing the
keyboard buttons. Each square would have a number on it during the test
phase for participants to press the corresponding button

Discussion

In Experiment 1, we replicated previous research in showing
that the change detection task was highly reliable (Xu et al.,
2018), but we found substantially higher reliability for the
change localization task, such that only half the number of
trials were needed to achieve the same reliability. In
Experiment 2, we sought to replicate these findings with shape
rather than color memoranda.

(¢}

Change localization accuracy

Change detection capacity (K)

localization paradigm also had a high internal reliability, with a Pearson
correlation of 0.93. ¢ Change localization exhibited the same individual
differences measured by change detection paradigm, with a Pearson cor-
relation of 0.82
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Fig. 3 Change localization was statistically more reliable than change
detection paradigm. a Iterative downsampling of split-half correlation
using change detection data. b Iterative downsampling of split-half cor-
relation using change localization data. ¢ The minimum number of trials

Experiment 2

Method

Participants

One hundred participants were recruited at the rate of $9.50
per hour from Prolific, an online platform for participant re-
cruitment. All participants were 18-35 years old, currently

lived in the USA, had normal or corrected-to-normal vision,
and had no ongoing psychological or neurological disorders.
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Number of subjects

that reached reliability goal (split-half corrected correlation of 0.8) in
change detection and change localization paradigm. Across all sample
sizes, change localization outperformed change detection by requiring
far less trials to be similarly reliable

Stimuli

In both of our visual working memory tasks, we created eight
different color shapes with the same gray background (circle,
x, triangle, vertical bar, horizontal bar, square, crescent and
cog). An example of all shapes in black is shown in Online
Supplementary Material (OSM) Fig. 1. A critical design goal
for these stimuli was to achieve the highest discriminability
for all possible pairs of objects in the array. Excellent discrim-
inability for each possible pair of shapes should minimize
comparison errors in which the observer had stored the
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changed item, but did not have a precise enough memory to
detect the change. This is important because past work has
shown that when comparison errors are prevalent, perfor-
mance in such tasks begins to track the precision of memory
rather than the number of items that can be retained (Awh
et al., 2007; Fukuda et al., 2010).

Colored shapes could appear anywhere within a circular
area of the monitor within 30-200 pixels from the center of
the canvas screen. Each shape was randomly placed in one of
the six sextants such that no two shapes were placed within the
same 60° on the screen. Furthermore, the minimum distance
between two neighboring shapes would not exceed 36.7
pixels. Each shape could appear in one of the nine distinct
colors, and the color was the same for all stimuli within any
trial (RGB values: red = 175 0 0; green = 0 185 0; blue=0 0
255; magenta = 255 0 255; yellow = 255 255 0; cyan = 0 255
255; orange = 255 155 0; white = 255 255 255; black =0 0 0).
Participants were instructed to fixate at a small black plus (30
px in Arial) at the center of the screen throughout the trial.

Procedures

We administered a change detection task with set size 6. In
each trial, six colored shapes appeared on the screen

simultaneously for 250 ms, followed by a 1,000-ms blank
retention interval. Then, one color shape appeared at the po-
sition of one of the prior shapes, and the participant indicated
whether the shape had changed. Changes occurred with a
probability of 0.5. Each participant completed 240 trials of
the change detection task in total (see Fig. 4 Upper).

We also administered the change localization task with set
size 6. In each trial, six colored shapes appeared simultaneous-
ly for 250 ms, followed by 1,000 ms of a blank retention
interval. Then, the six shapes reappeared in the same posi-
tions, with one of the shapes having changed on every trial.
The participant indicated which one of the six colored shapes
had changed by typing the number of a digit that appeared at
that shape’s location. Each participant completed 240 trials of
the change localization task in total (see Fig. 4 Lower).

Result

Change localization measured the same individual
differences as revealed by change detection

To test the reliability of each paradigm, we performed an odd-
even split-half analysis by dividing all trials into halves to
calculate the reliability of each metric. The split-half analysis

Task A: Simultaneous Change Detection Paradigm (240 trials)

500 ms 250 ms stimulus
ITI set size 6

1000 ms
Retention Interval

Till Response
Change or No Change

Task B: Simultaneous Change Localization Paradigm (240 trials)

500 ms 250 ms stimulus
ITI set size 6

Fig. 4 The change detection paradigm and change localization paradigm
used in Exp 2. (Upper) A sample of set size 6 simultaneous change
detection paradigm. Six colored shapes appeared on the screen simulta-
neously. At the end of the trial, participants were cued with a shape at one
of the six original locations, with 50% exhibited a shape change and 50%
without change. (Lower) A sample of the change localization paradigm.

1000 ms
Retention Interval

Till Response
Which stimulus changed
its shape

Six colored shapes appeared on the screen simultaneously. At the end of
the trial, participants were cued with six shapes at the original locations as
the study phase. One of the stimuli would change its shape. and partici-
pants need to report which one changed its shape by pressing the key-
board buttons. Each shape would have a number on it during the test
phase for participants to press the corresponding button
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revealed that change detection paradigm had a high internal
reliability(#(99) = 0.85, p = 2.10 x 10®). Similarly, change
localization also had high internal reliability (#(99)=0.91, p =
1.63 x 107*). Given the high reliability of both paradigms, we
then examined if change localization accounted for the same
variance in visual working memory as change detection. A
correlational analysis between two paradigms suggested that
they were measuring strongly overlapping variance (7(99) =
0.65, p =233 x 10", see Fig. 5).

Change localization was statistically more reliable than
change detection

To further examine if change localization was more statistically
reliable, we performed iterative down-sampling on the split-half
correlations of the two paradigms just like in Experiment 1. We
first down-sampled trials and subjects from the whole dataset.
Then, we could calculate, for each unique combination of subject
and trial numbers, the reliability metric within these smaller sam-
ples. This analysis revealed the lowest possible numbers of sub-
jects and trials needed to achieve a given level of reliability. In
our experiment, we adopted 100 iterations of runs in the down-
sampling procedure, meaning that each number of trials and
subjects were randomly sampled for 100 times from our dataset.
We randomly sampled the number of subjects from five to 100 in
steps of five, and the number of trials from five to 200 in steps of
five. One obvious result observed from the down-sampling fig-
ures was that change localization required far fewer trials and
subjects to reach the same statistical reliability as change detec-
tion. This is illustrated by the broader swath of green points that
indicate a reliability of at least 0.8. Figure 6a and b illustrates this
with a much broader region of green points (indicating a reliabil-
ity of at least 0.8) for change localization compared to change
detection. To better quantify the advantage of change localization
on reliability, we calculated the minimum number of trials re-
quired to reach a Spearman-Brown correlation of 0.8 in each
paradigm. The result revealed that change localization always
needed less trials to be statistically reliable than change detection,
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Change detection even trial capacity (K)
Change localization even trial accuracy

Change detection odd trial capacity (K)

Fig. 5 Change detection and change localization paradigms both had
high reliability. a An odd-even split-half analysis revealed that the change
detection paradigm had a high internal reliability, with a Pearson corre-
lation of 0.85. b An odd-even split-half analysis suggested that the change
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Change localization odd trial accuracy

and with more than ten subjects, it required only half (or fewer)
trials as required by change detection (see Fig. 6¢ and Table 1).

Discussion

Experiment 2 showed that change detection task had high
internal reliability when the feature being tested was shape
instead of color. Furthermore, we found that that change lo-
calization task using shape was also statistically reliable with
240 trials and shared highly similar variance in measuring
visual working memory performance as the change detection
paradigm. Lastly, we found that change localization paradigm
outperformed change detection paradigm in reliability in that
it always required less than half the number of trials to be
reliable using the same number of participants.

In our first two experiments, we showed that the change
localization paradigm was highly reliable, and tapped into
similar variance in performance as the change detection task.
Both experiments utilized a relatively high set size so that
individual differences were easier to detect. In our next exper-
iment, we examined whether the change localization para-
digm remained reliable with lower set sizes of only four or
five items, and we examined its sensitivity to detecting the
difference in performance between these two conditions.

Experiment 3
Method
Participants

Fifty-eight participants were recruited at the rate of $9.50 per
hour from Prolific, an online platform for participant recruit-
ment. All participants were 1835 years old, currently lived in
the USA, had normal or corrected-to-normal vision, and had
no ongoing psychological or neurological disorders.
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localization paradigm also had a high internal reliability, with a Pearson
correlation of 0.91. ¢ Change localization exhibited similar individual
differences measured by change detection paradigm, with a Pearson cor-
relation of 0.65
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Table 1  Minimum trials required to achieve reliability with 20 subjects
Minimum trials required to achieve Change Change
reliability with 20 subjects detection localization
Exp. 1: color working memory task (ss6) 80 40

Exp. 2: shape working memory task (ss6) 135 60

Stimuli

The stimuli used were the same as in Experiment 1.

o
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Procedures

In measuring visual working memory capacity, we adminis-
tered a color version of change detection task similar to that in
Experiment 1. Each participant was asked to determine if the
color of the probed item changed with four or five items dur-
ing encoding, different from the set size 6 used in Experiment
1. Meanwhile, each participant also finished color change lo-
calization task with four or five test items on screen instead of
set size 6 (other procedures as in Exp. 1). Overall, each par-
ticipant finished 140 trials each of change localization with set
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Fig. 6 Change localization was statistically more reliable than change
detection paradigm. a Iterative downsampling of split-half correlation
using change detection data. b Iterative downsampling of split-half cor-
relation using change localization data. ¢ The minimum number of trials

that reached reliability goal (split-half corrected correlation of 0.8) in
change detection and change localization paradigm. Across all sample
sizes, change localization outperformed change detection by requiring
far less trials to be similarly reliable
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size 4 and 5, and 140 trials each of change detection with set
size 4 and 5, resulting in 560 trials in total.

Result

Change localization measured similar individual differences
as revealed by change detection paradigm across two smaller
set sizes

To test the reliability of each paradigm, we performed an odd-
even split-half analysis by dividing all trials into halves to
calculate the reliability of each metric. The split-half analysis
revealed that the change detection paradigm had a high inter-
nal reliability with both set size 4 (#(56) = 0.87, p = 5.29 x
107") and set size 5 (1(56) = 0.84, p =3.09 x 107'°). Similarly,
the change localization paradigm was also shown to have a
high internal reliability with both set size 4 (#(56) = 0.90, p =
1.76 x 10" and set size 5 (1(56) = 0.90, p = 2.15 x 10722).
Given the high reliability of both paradigms, we then examined
if change localization accounted for the same variance in visual
working memory as change detection. A correlational analysis
between two paradigms suggested that they were measuring
similar variance under set size 4 (#(56) = 0.71, p = 2.91 x
107'%) and set size 5 conditions (1(56) = 0.78, p =497 x
10'13, see Fig. 7a and b).

Change localization was more sensitive in capturing set size
effects than change detection

To further examine if change localization was more sensitive
in capturing set size accuracy differences, we performed iter-
ative down-sampling on the t-statistics of the two paradigms
just like in Experiment 1. We first down-sampled trials and
subjects from the whole dataset. Then, we could calculate, for
each unique combination of subject and trial numbers, the t
statistics and resulting p-value between accuracies for set size
4 trials and set size 5 trials within these smaller samples. This
analysis revealed the lowest possible numbers of subjects and
trials needed to achieve a given level of significance value. In
our experiment, we adopted 100 iterations of runs in the
down-sampling procedure, meaning that each number of trials
and subjects were randomly sampled for 100 times from our
dataset. We randomly sampled the number of subjects from
five to 50 in steps of 5, and the number of trials from five to
100 in steps of 5. One obvious result observed from the down-
sampling figures was that change localization required far
fewer trials and subjects to reach the same statistical sensitiv-
ity as change detection. This, as illustrated by the broader
swath of blue points that indicate a p-value of at most 0.05.
Figure 7b and c illustrates this with a much broader region of
blue points (indicating a p-value of at most 0.05) for change
localization compared to change detection.
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Determining a formula for calculating K using change
localization data

Past work has often quantified working memory capacity in
terms of K, or the number of items stored on average in each
trial. Here, our goal was to determine the appropriate formula to
estimate K using change localization data. Here, it is critical to
highlight a key assumption of this measurement approach.
Specifically, the proposed formula presumes that the /imiting
factor for accurate performance is whether the changed item
was stored, not whether the fidelity of stored memories was
sufficient to detect small changes. The same assumption under-
lies each of the K formulas that have been offered in the extant
literature (Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988).
Indeed, past work has shown that when comparison errors are
prevalent, change detection performance may tap into a qualita-
tively distinct aspect of memory ability (Awh et al., 2007). For
example, studies of individual differences have shown that sep-
arate latent variables emerge for detecting large and small chang-
es (Fukuda et al., 2010; Unsworth et al., 2014), consistent with
the hypothesis that these measures tap into the number and fidel-
ity of the stored representations, respectively. Thus, we mini-
mized comparison errors by choosing stimuli that maximize the
discriminability of every possible pair of colors or shapes.
Assuming that a participant had a visual working memory
capacity of K and the encoding array had N items in total, the
probabilities for the participant to successfully maintain the test
item in their working memory or fail to maintain the item were:

P(success) = %
plfaiy = N

respectively. We further assumed that if the participant main-
tained the test item in their working memory, he or she would
always correctly identify the change item during test. Contrarily,
if the participant failed to maintain the item in their visual work-
ing memory, they would randomly guess one out of the N total
items they studied as the one that changed its relevant feature.
Therefore, the accuracy under the two circumstances would be:

Acc(success) = P(success)*1 = v
o1 _ (N-K)
N N2

Acc(fail) = P(fail)

respectively.

Notice here that we adopted the random guessing rule that
assumed participants would randomly select from the entire
set of items in the test display when they had not successfully
detected a change. Although the optimal strategy would be to
avoid choosing any item that had been stored (Rhodes et al.,
2018), the data were inconsistent with the application of this
optimal strategy. Instead, pilot work showed that the
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Fig. 7 Change detection and change localization paradigms captured
similar individual differences under two smaller set sizes. a Change
localization exhibited similar individual differences measured by
change detection paradigm under set size 4 and 5. b Iterative

assumption of random guessing produced K scores that better
matched estimates from change detection tasks in the same
participants. Numerically, random guessing models constant-
ly overestimate K scores compared to change detection (set
size 4: 0.2, set size 5: 0.3), while informed guessing models
constantly underestimate K scores (set size 4: -0.5, set size 5: -
0.3). Therefore, accuracy in the change localization paradigm
can be expressed as follows:

Acc(change localization) = Acc(success) + Acc(fail)

(N-K) K
N2 N

N

50.0 65.0 80.0

Trial Count

downsampling of the p value resulted from the paired t-test on accuracies
between set size 4 and 5 using change detection data. ¢ Iterative
downsampling of the p value resulted from the paired t-test on accuracies
between set size 4 and 5 using change localization data

Given that the set size N was a known variable for
each participant, we could therefore derive K, the visual
working memory capacity, from the accuracy of change
localization:

_ Acc(change localization)*N N
B N-1

K

In Experiment 3, each participant had their two K capacity
estimates with set size 4 and 5 from the change detection
paradigm, as well as two change localization accuracies with
the same set sizes. The within-subject change localization and
change detection design allowed us to calculate K capacity
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from change localization task and validate with K capacity
from the canonical change detection task.

First, the calculated change localization K was highly cor-
related to the change detection K scores for both set size 4
((56)=0.71, p=2.91x 10"°) and set size 5 (1(56) = 0.78, p =
4.97x 10'13). As shown in Fig. 8, the mean difference between
change localization K and change detection was small. The
equation overestimated 0.22 squares on average out of an
array with four items being studied and overestimated 0.32
squares out of a study array of five items, both reasonably
small from the change detection K capacity estimates.
Furthermore, both distributions were roughly symmetric
around zero. We concluded that this equation could be effec-
tively used in converting accuracy in change localization into
K capacity score.

Discussion

In Experiment 3, we replicated previous work in showing that
the change localization paradigm was statistically reliable with
slightly smaller set sizes. Furthermore, our results revealed
that the change localization paradigm was more sensitive in
detecting the decline in working memory accuracy with in-
creasing set sizes than the change detection paradigm. Lastly,
we derived an equation that converted change localization
accuracy into K, the number of items retained in visual work-
ing memory. Adopting a random guessing strategy, we
showed that K measured by change localization was highly
correlated to, and numerically similar to, K measured by the
change detection paradigm.

In Experiment 4, we examined whether change localization
would be a more sensitive procedure for detecting another
established empirical pattern in the working memory litera-
ture. Estimates of working memory capacity (K) are intended
to represent the total number of items a person can retain on
average in these tasks (Cusack et al., 2009). Interestingly, this
estimate has been shown to decline when participants are pre-
sented with larger sample arrays, such that estimates of K

Set size 4 error
(change localization - change detection)
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Fig. 8 K capacity derived from change localization highly resembled K

measured in change detection. a Applying the equation of change
localization K. the error between change localization K and change
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decline as set size increases beyond about three items. This
“overload” cost has been shown to be amplified in participants
with lower working memory capacity (Balaban et al., 2019),
such that there is a negative correlation between the size of the
overload effect and separately acquired estimates of K. Here,
we sought to document this empirical pattern — the correlation
between WM capacity and the size of the overload effect —
using both change detection and change localization. Since
the overall reliability is expected to be lower for this difference
score, the “overload” cost, compared to the measure of K, this
experiment provided a further opportunity to examine whether
change localization would provide a more sensitive procedure
for documenting the relationship between working memory
capacity and the overload effect.

Experiment 4

Method

Participants

Two separate groups, each of 50 participants, were recruited at
the rate of $9.50 per hour from Prolific, an online platform for
participant recruitment. All participants were 18-35 years old,
currently lived in the USA, had normal or corrected-to-normal
vision, and had no ongoing psychological or neurological
disorders.

Stimuli

The stimuli used were the same as in Experiment 1.
Procedures

For the first group of participants, we administered a color ver-

sion of change detection task similar to those in Experiment 1.
Each participant was asked to determine if the color of the
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detection K were close to zero on average and symmetric around zero
with set size 4. b The error between two Ks were also close to zero when
the equation was applied on set size 5 accuracy data
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probed item changed with four, six, or eight items during
encoding. Each participant finished 120 trials of change detec-
tion for each set size, resulting in 360 trials in total.

For the second group of participants, each participant finished
the color change localization task with four, six, or eight test
items on screen. Each participant finished 120 trials of change
detection for each set size, resulting in 360 trials in total.

Result

Change localization was more sensitive to the overload effect
than the change detection paradigm

In the change detection task, we observed the typical pattern
that the participants on average had stored less items when
presented with set size § arrays compared to set size 4 arrays
(7(49) = 2.54, p = 0.01, see Fig. 9a). The change localization
paradigm also showed a higher measured capacity under set
size 4 than set size 8 (/(49) =4.38, p=6.15x 107, see Fig. 9¢).

Another iterative down-sampling analysis revealed that
change localization could reliably detect the overload effect
with fewer trials and subjects. We performed iterative down-
sampling on the t score comparing K capacity under set size 4
and set size 8 for the two paradigms. In our experiment, we
adopted 100 iterations of runs in the down-sampling proce-
dure, meaning that each number of trials and subjects were
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Fig. 9 Change localization was statistically more sensitive in capturing
set size effect than change detection paradigm. a Change detection
paradigm showed signfiicant drop in K estimate from set size 4 to set
size 8. b Iterative downsampling of z-score comparing K estimates under
set size 4 condition to that of set size 8 condition in change detection data.

randomly sampled for 100 times from our dataset. We ran-
domly sampled the number of subjects from five to 50 in steps
of five, and the number of trials from five to 120 in steps of
five. As Fig. 9 illustrates, change localization required a small-
er number of trials and subjects to observe a significant drop in
K from set size 4 to 8, due to the pattern of the green squares
being more left and lower compared to the change detection
figure (see Fig. 9b and d).

Change localization was more sensitive to the correlation
between K and the size of the overload effect

In the change detection task, we replicated past findings that
higher K subjects showed a smaller drop in K when set size
was increased. To document this effect in the present study,
we measured the correlation between set size 6 K estimates
and the difference between K estimates under set size 4 and 8.
We saw a negative correlation between K and the drop be-
tween set size 4 and 8, meaning that high-capacity subjects
exhibited a smaller overload effect than lower capacity sub-
jects (1(49) = 0.42, p = 0.0025, see Fig. 10a). The change
localization paradigm also showed the same negative correla-
tion (1(49) = -0.54, p = 4.68 x 107, see Fig. 10c).

Given that both paradigms showed that K capacity was
negatively correlated to the capacity drop with larger set sizes,
we further examined which paradigm could reliably detect this
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¢ Change localization paradigm also showed signfiicant drop in K esti-
mate from set size 4 to set size 8. d Iterative downsampling of z-score
comparing K estimates under set size 4 condition to that of set size 8
condition in change localization data
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Fig. 10 Change localization was statistically more sensitive in capturing
the set size effect that high capacity subjects would improve more when
being tested with 8 stimuli compared to 4 stimuli than the change
detection paradigm. a Change detection paradigm showed that K
capacity estimated with a left-out set size 6 task negatively correlated to
the K capacity change from set size 4 to set size 8. b Iterative
downsampling of r correlations between K estimates and the change in

correlation with fewer trials and subjects. We performed iter-
ative down-sampling on the Pearson correlation between K
capacity and the difference in capacity estimated by set size
4 and set size 8 for the two paradigms. In our experiment, we
adopted 100 iterations of runs in the down-sampling proce-
dure, meaning that each number of trials and subjects were
randomly sampled for 100 times from our dataset. We ran-
domly sampled the number of subjects from five to 50 in steps
of five, and the number of trials from five to 120 in steps of
five. Change localization required a smaller number of trials
and subjects to observe a significant correlation between K
and the drop in performance from set size 4 to 8, as illustrated
by the broader swath of green squares in Fig. 10d (change
localization) than in Fig. 10b (change detection).

Discussion
In Experiment 4, we replicated previous findings of an “over-

load” effect in which capacity estimates decline as set sizes are
increased rather beyond capacity limits. Furthermore, we
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K from set size 4 condition to set size 8 condition in change detection
data. ¢ Change localization paradigm also showed that K capacity esti-
mated with a left-out set size 6 task negatively correlated to the K capacity
change from set size 4 to set size 8. d Iterative downsampling of r corre-
lations between K estimates and the change in K from set size 4 condition
to set size 8 condition in change localization data

replicated the finding that this overload effect was negatively
correlated with working memory capacity, such that higher K
subjects showed a smaller decline in performance with larger
set sizes. The change localization paradigm showed both ef-
fects, similar in magnitude to the change detection paradigm.
Lastly, the change localization paradigm required fewer trials
and subjects to observe similar empirical patterns for both
effects compared to change detection paradigm. These find-
ings provide further evidence that change localization may be
superior to change detection in terms of both reliability and
sensitivity to known empirical patterns.

General discussion

Here we show that change localization provides a highly reli-
able and sensitive method for measuring variations in working
memory capacity across individuals and experimental condi-
tions. Participants viewed a whole-field test display and se-
lected the item that had changed compared to the sample
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display. We showed that this new paradigm tapped into the
same variance across individuals as the change detection task,
using three different set sizes and both color and shape stimuli.
Furthermore, the new paradigm required less than half of the
number of trials (about 5075 trials) to achieve strong reliabil-
ity as a measure of individual differences. Lastly, we con-
firmed that change localization was sensitive to two well-
known effects in the change detection literature, and the new
paradigm required far fewer trials to reveal these effects.

Change localization may be superior to change detection in
part because of a substantially lower level of chance perfor-
mance for localization (1 in 6) versus detection (1 in 2). Lower
chance level in change localization enabled higher variance
across individuals who had above-chance performance.
Additionally, the smaller number of trials change localization
needed made it a faster test than change detection. Thus, in
addition to providing a measure with stronger psychometric
properties, it will also be an expedient approach to use when-
ever data collection time is a limiting factor, such as with
special populations. Additionally, a change localization para-
digm may provide a useful alternative in a number of other
domains, such studies employing scene (Caplovitz et al.,
2008) or video (Levin et al., 2018) stimuli.

Another virtue of the change localization measure is that it
is bias-free, because participants have no opportunity to set a
response threshold (whether liberal or conservative) for
whether a change was detected or not. Indeed, Williams
et al. (2022) have reported that when response bias is very
strong, change detection scores may underestimate true mem-
ory capacity. Thus, bias-free measures like ours (e.g., Adam
et al., 2015; Cowan et al., 2012; Eng et al., 2005) avoid this
potential source of error. That said, we also examined whether
our data provided evidence for the impact of response bias in
change detection that was described by Williams et al. First,
we found that capacity estimates using change localization
were reliably higher than estimates obtained with change de-
tection. To examine whether this increase was linked with the
degree of response bias in change detection, we examined
whether the size of this advantage for change localization
was related to a behavioral measure of response bias (i.e., a
larger proportion of “no-change” responses was taken as evi-
dence of a more conservative response bias). Across three
experiments, we did not find evidence that response bias
was explained by the conservativeness of participants (r =
0.13, -0.03, 0.25, respectively; p = 0.20, 0.82, 0.06, respec-
tively). Therefore, while Williams et al. (2022) are correct that
a strong response bias can yield an artificial decline in capacity
estimates, our large sample did not show the predicted rela-
tionship between response bias and WM capacity estimates.
Moreover, while it is likely that response bias affects perfor-
mance in change detection tasks, the high convergent validity
between change detection estimates of WM capacity and a
wide array of cognitive abilities (e.g., Fukuda et al., 2010;

Unsworth et al., 2014) suggests that a substantial proportion
of between-subject variance in change detection is not attrib-
utable to response bias. Finally, change detection has been
shown to be a robust method for documenting the effects
various experimental manipulations such as the number of
items stored (Luck & Vogel, 1997), the presence of distractors
(Vogel et al., 2005), and the impact of statistical regularities
(Umemoto et al., 2010). The presence of a response bias does
not undermine these uses of this metric for WM capacity.

To conclude, we have shown that change localization is a
highly reliable and sensitive approach for measuring WM ca-
pacity. Change localization requires only half as many trials as
change detection to achieve robust reliability, and provides a
more sensitive measure for efficiently documenting known
empirical patterns from the change detection literature. Our
hope is that this may be a useful approach for a wide range
of questions within regarding this core aspect of cognitive
ability.
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