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Abstract Because of the central role of workingmemory capac-
ity in cognition, many studies have used short measures of work-
ingmemory capacity to examine its relationship to other domains.
Here, we measured the reliability and stability of visual working
memory capacity, measured using a single-probe change detec-
tion task. In Experiment 1, the participants (N = 135) completed a
large number of trials of a change detection task (540 in total, 180
each of set sizes 4, 6, and 8).With large numbers of both trials and
participants, reliability estimates were high (α > .9).We then used
an iterative down-sampling procedure to create a look-up table for
expected reliability in experiments with small sample sizes. In
Experiment 2, the participants (N = 79) completed 31 sessions
of single-probe change detection. The first 30 sessions took place
over 30 consecutive days, and the last session took place 30 days
later. This unprecedented number of sessions allowed us to exam-
ine the effects of practice on stability and internal reliability. Even
after much practice, individual differences were stable over time
(average between-session r = .76).

Keywords Visual workingmemory . Reliability . Change
detection

Working memory (WM) capacity is a core cognitive ability
that predicts performance across many domains. For example,
WM capacity predicts attentional control, fluid intelligence,

and real-world outcomes such as perceiving hazards while
driving (Engle, Tuholski, Laughlin, & Conway, 1999;
Fukuda, Vogel, Mayr, & Awh, 2010; Wood, Hartley, Furley,
& Wilson, 2016). For these reasons, researchers are often in-
terested in devising brief measures of WM capacity to inves-
tigate the relationship of WM capacity to other cognitive pro-
cesses. However, truncated versions of WM capacity tasks
could potentially be inadequate for reliably measuring an in-
dividual’s capacity. Inadequate measurement could obscure
correlations between measures, or even differences in perfor-
mance between experimental conditions. Furthermore, al-
though WM capacity is considered to be a stable trait of the
observer, little work has directly examined the role of exten-
sive practice in the measurement of WM capacity over time.
This is of particular concern because of the popularity of re-
search examining whether training affects WM capacity
(Melby-Lervåg & Hulme, 2013; Shipstead, Redick, &
Engle, 2012). Extensive practice on any given cognitive task
has the potential to significantly alter the nature of the variance
that determines performance. For example, extensive practice
has the potential to induce a restriction-of-range problem, in
which the bulk of the observers reach similar performance
levels—thus reducing any opportunity to observe correlations
with other measures. Consequently, a systematic study of the
reliability and stability ofWM capacity measures is critical for
improving the measurement and reproducibility of major phe-
nomena in this field.

In the present study, we sought to establish the reliability
and stability of one particular WM capacity measure: change
detection. Change detection measures of visual WM have
gained popularity as a means of assessing individual differ-
ences in capacity. In a typical change detection task, partici-
pants briefly view an array of simple visual items (for ~100–
500 ms), such as colored squares, and remember these items
across a short delay (~1–2 s). At test, observers are presented
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with an item at one of the remembered locations, and they
indicate whether the presented test item is the same as the
remembered item (Bno-change^ trial) or is different (Bchange
trial^). Performance can be quantified as raw accuracy or con-
verted into a capacity estimate (BK^). In capacity estimates,
performance for change trials and no-change trials is calculat-
ed separately as hits (the proportion of correct change trials)
and false alarms (the proportion of incorrect no-change trials)
and converted into a set-size-dependent score (Cowan, 2001;
Pashler, 1988; Rouder, Morey, Morey, & Cowan, 2011).

Several beneficial features of change detection tasks have
led to their increased popularity. First, change detection mem-
ory tasks are simple and short enough to be used with devel-
opmental and clinical populations (e.g., Cowan, Fristoe,
Elliott, Brunner, & Saults, 2006; Gold, Wilk, McMahon,
Buchanan, & Luck, 2003; Lee et al., 2010). Second, the rela-
tively short length of trials lends the task well to neural mea-
sures that require large numbers of trials. In particular, neural
studies employing change detection tasks have provided
strong corroborating evidence of capacity limits in WM
(Todd & Marois, 2004; Vogel & Machizawa, 2004) and have
yielded insights into potential mechanisms underlying indi-
vidual differences in WM capacity (for a review, see Luria,
Balaban, Awh, & Vogel, 2016). Finally, change detection
tasks and closely related memory-guided saccade tasks can
be used with animal models from pigeons (Gibson,
Wasserman, & Luck, 2011) to nonhuman primates
(Buschman, Siegel, Roy, & Miller, 2011), providing a rare
opportunity to directly compare behavior and neural correlates
of task performance across species (Elmore, Magnotti, Katz,
& Wright, 2012; Reinhart et al., 2012).

A main aim of this study is to quantify the effect of mea-
surement error and sample size on the reliability of change
detection estimates. In previous studies, change detection es-
timates of capacity have yielded good reliability estimates
(e.g., Pailian & Halberda, 2015; Unsworth, Fukuda, Awh, &
Vogel, 2014). However, measurement error can vary dramat-
ically with the number of trials in a task, thus impacting reli-
ability; Pailian and Halberda found that reliability of change
detection estimates greatly improved when the number of tri-
als was increased. Researchers frequently employ vastly dif-
ferent numbers of trials and participants in studies of individ-
ual differences, but the effect of trial number on change detec-
tion reliability has never been fully characterized. In studies
using large batteries of tasks, time and measurement error are
forcesworking in opposition to one another.When researchers
want to minimize the amount of time that a task takes, mea-
sures are often truncated to expedite administration. Such
truncated measures increase measurement noise and potential-
ly harm the reliability of the measure. At present, there is no
clear understanding of the minimum number of either partic-
ipants or trials that is necessary to obtain reliable estimates of
change detection capacity.

In addition to measurement error within-session, reliability
of individual differences could be compromised with exten-
sive practice. Previously, it was found that visual WM capac-
ity estimates were stable (r = .77) after 1.5 years between
testing sessions (Johnson et al., 2013). However, the effect
of extensive practice on change detection estimates of capac-
ity has yet to be characterized. Extensive practice could harm
the reliability and stability of measures in a couple of ways.
First, it is possible that participants could improve so much
that they reach performance ceiling, thus eliminating variabil-
ity between individuals. Second, if individual differences are
due to the utilization of optimal versus suboptimal strategies,
then participants might converge to a common mean after
engaging in extensive practice and finding optimal task strat-
egies. Both of these hypothetical possibilities would call into
question the true stability of WM capacity estimates, and like-
wise severely harm the statistical reliability of the measure. As
such, in Experiment 2 we directly quantified the extent of
extensive practice on the stability of WM capacity estimates.

Overview of experiments

We measured the reliability and stability of a single-probe
change detection measure of visual WM capacity. In
Experiment 1, we measured the reliability of capacity esti-
mates obtained with a commonly used version of the color
change detection task for a relatively large number of partic-
ipants (n = 135) and a larger than typical number of trials (t =
540). In Experiment 2, we measured the stability of capacity
estimates across an unprecedented number of testing sessions
(31). Because of the large number of sessions, we could in-
vestigate the stability of change detection estimates after ex-
tended practice and over a period of 60 days.

Experiment 1

Materials and method

Participants A total of 137 individuals (102 females, 35
males; mean age = 19.97, SD = 1.07) with normal or
corrected-to-normal vision participated in the experiment.
Participants provided written informed consent, and the study
was approved by the Ethics Committee at Southwest
University. Participants received monetary compensation for
their participation. Two participants were excluded because
they had negative average capacity values, resulting in a final
sample of 135 participants.

Stimuli The stimuli were presented on monitors with a refresh
rate of 75 Hz and a screen resolution of 1,024 × 768.
Participants sat approximately 60 cm from the screen, though
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a chinrest was not used so all visual angle estimates are ap-
proximate. In addition, there were some small variations in
monitor size (five 16-in. CRT monitors, three 19-in. LCD
monitors) in testing rooms, leading to small variations in the
size of the colored squares from monitor to monitor. Details
are provided about the approximate range in degrees of visual
angle.

All stimuli were generated in MATLAB (The MathWorks,
Natick, MA) using the Psychophysics Toolbox (Brainard,
1997). Colored squares (51 pixels; range of 1.55° to 2.0° vi-
sual angle) served as memoranda. Squares could appear any-
where within an area of the monitor subtending approximately
10.3° to 13.35° horizontally and 7.9° to 9.8° vertically.
Squares could appear in any of nine distinct colors, and colors
were sampled without replacement within each trial (RGB
values: red = 255 0 0; green = 0 255 0; blue = 0 0 255;
magenta = 255 0 255; yellow = 255 255 0; cyan = 0 255
255; orange = 255 128 0; white = 255 255 255; black = 0 0
0). Participants were instructed to fixate a small black dot
(approximate range: .36° to .47° of visual angle) at the center
of the display.

Procedures Each trial began with a blank fixation period of
1,000 ms. Then, participants briefly viewed an array of four,
six, or eight colored squares (150 ms), which they remem-
bered across a blank delay period (1,000 ms). At test, one
colored square was presented at one of the remembered loca-
tions. The probabilities were equal that the probed square was
the same color (no-change trial) or was a different color
(change trial). Participants made an unspeeded response by
pressing the Bz^ key, if the color was the same, or the B/^
key, if the color was different. Participants completed 180
trials of set sizes 4, 6, and 8 (540 trials total). Trials were
divided into nine blocks, and participants were given a brief
rest period (30 s) after each block. To calculate capacity,
change detection accuracy was transformed into a K estimate
using Cowan’s (2001) formula K = N × (H − FA), where N
represents the set size, H is the hit rate (proportion of correct
responses to change trials), and FA is the false alarm rate
(proportion of incorrect responses to no-change trials).
Cowan’s formula is best for single-probe displays like the
one employed here. For change detection tasks using whole-
display probes, Pashler’s (1988) formula may be more appro-
priate (Rouder et al., 2011).

Results

Descriptive statistics for each set size condition are shown in
Table 1, and data for both Experiments 1 and 2 are available
online at the website of the Open Science Framework, at
https://osf.io/g7txf/. We observed a significant difference in
performance across set sizes, F(2, 268) = 20.6, p < .001, ηp

2

= .133, and polynomial contrasts revealed a significant linear
trend, F(1, 134) = 36.48, p < .001, ηp

2 = .214, indicating that
the average performance declined slightly with increased
memory load.

Reliability of the full sample: Cronbach’s alpha We com-
puted Cronbach’s alpha (unstandardized) using K scores from
the three set sizes as items (180 trials contributing to each
item), and obtained a value of α = .91 (Cronbach, 1951). We
also computed Cronbach’s alpha using K scores from the nine
blocks of trials (60 trials contributing to each item) and ob-
tained a nearly identical value of α = .92. Finally, we comput-
ed Cronbach’s alpha using raw accuracy for single trials (540
items), and obtained an identical value of α = .92. Thus,
change detection estimates had high internal reliability for this
large sample of participants, and the precise method used to
divide trials into Bitems^ does not impact Cronbach’s alpha
estimates of reliability for the full sample. Furthermore, using
raw accuracy versus bias-corrected K scores did not impact
reliability.

Reliability of the full sample: Split-half The split-half cor-
relation of theK scores for even and odd trials was reliable, r =
.88, p < .001, 95% CI [.84, .91]. Correcting for attenuation
yielded a split-half correlation value of r = .94 (Brown, 1910;
Spearman, 1910). Likewise, the capacity scores from individ-
ual set sizes correlated with each other: rss4-ss6 = .84, p < .001,
95% CI [.78, .88]; rss6-ss8 = .79, p < .001, 95% CI [.72, .85];
rss4-ss8 = .76, p < .001, 95% CI [.68, .83]. Split-half correla-
tions for individual set sizes yielded Spearman–Brown-
corrected correlation values of r = .91 for set size 4, r = .86
for set size 6, and r = .76 for set size 8, respectively.

The drop in capacity from set size 4 to set size 8 has been
used in the literature as a measure of filtering ability. However,
the internal reliability of this difference score has typically
been low (Pailian & Halberda, 2015; Unsworth et al., 2014).
Likewise, we found here that the split-half reliability of the
performance decline from set size 4 to set size 8 (B4–8 Drop^)
was low, with a Spearman–Brown-corrected correlation value
of r = .24. Although weak, this correlation is of the same

Table 1 Descriptive statistics for Experiment 1

Mean K SD Min Max Kurtosis Skewness

Set Size 4 2.32 0.70 0.58 3.87 −0.49 −0.35
Set Size 6 2.10 0.97 0.07 4.80 −0.18 0.34

Set Size 8 1.99 0.97 −0.18 4.53 −0.52 0.14

Average 2.14 0.82 0.38 4.31 −0.47 0.07

Descriptive statistics are shown separately for each set size and for the
average of the three set sizes. Kurtosis and skewness values are both
centered around 0. Neither kurtosis nor skewnesswas credibly nonnormal
in any condition (Cramer, 1997).
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strength that was reported in earlier work (Unsworth et al.,
2014). The split-half reliability of the performance decline
from set size 4 to set size 6 was slightly higher, r = .39, and
the split-half reliability of the difference between set size 6 and
set size 8 performance was very low, r = .08. The reliability of
differences scores can be impacted both by (1) the internal
reliability of each measure used to compute the difference
and (2) the degree of correlation between the two measures
(Rodebaugh et al., 2016). Although the internal reliability of
each individual set size was high, the positive correlation be-
tween set sizes may have decreased the reliability of the set
size difference scores.

An iterative down-sampling approach To investigate the
effects of sample size and trial number on the reliability esti-
mates, we used an iterative down-sampling procedure. Two
reliability metrics were assessed: (1) Cronbach’s alpha using
single-trial accuracy as items, and (2) split-half correlations
using all trials. For the down-sampling procedure, we random-
ly sampled participants and trials from the full dataset. The
number of participants (n) was varied from 5 to 135 in steps of
5. The number of trials (t) was varied from 5 to 540 in steps of
5. Number of participants and number of trials were factorially
combined (2,916 cells total). For each cell in the design, we
ran 100 sampling iterations. On each iteration, n participants
and t trials were randomly sampled from the full dataset and
reliability metrics were calculated for the sample.

Figure 1 shows the results of the down-sampling procedure
for Cronbach’s alpha. Figure 2 shows the results of the down-
sampling procedure for split-half reliability estimates. In each
plot, we show both the average reliabilities obtained across the
100 iterations (Figs. 1a and 2a) and the worst reliabilities
obtained across the 100 iterations (Figs. 1b and 2b).
Conceptually, we could think of each iteration of the down-
sampling procedure as akin to running one Bexperiment,^with
participants randomly sampled from our Bpopulation^ of 137.
Although it is good to know the average expected reliability

across many experiments, the typical experimenter will run an
experiment only once. Thus, considering the Bworst case
scenario^ is instructive for planning the number of partici-
pants and the number of trials to be collected. For a more
complete picture of the breadth of the reliabilities obtained,
we can also consider the variability in reliabilities across iter-
ations (SD) and the range of reliability values (Fig. 2c and d).
Finally, we repeated this iterative down-sampling approach
for each individual set size. The average reliability as well as
the variability of the reliabilities for individual set sizes are
shown in Fig. 3. Note that each set size begins with 1/3 as
many trials as in Figs. 1 and 2.

Next, we looked at some potential characteristics of sam-
ples with low reliability (e.g., iterations with particularly low
vs. high reliability). We ran 500 sampling iterations of 30
participants and 120 trials, then we did a median split for
high- versus low-reliability samples. No significant differ-
ences emerged in the mean (p = .86), skewness (p = .60), or
kurtosis (p = .70) values of high- versus low-reliability sam-
ples. There were, however, significant effects of sample range
and variability. As would be expected, samples with higher
reliability had larger standard deviations, t(498) = 26.7, p <
.001, 95% CI [.14, .17], and wider ranges, t(498) = 15.2, p <
.001, 95% CI [.52, .67], than samples with low reliability.

A note for fixed capacity + attention estimates of capacity
So far, we have discussed only the most commonly used
methods of estimating WM capacity (K scores and percent-
ages correct). Other methods of estimating capacity have been
used, and we now briefly mention one of them. Rouder and
colleagues (2008) suggested adding an attentional lapse pa-
rameter to estimates of visual WM capacity, a model referred
to as fixed capacity + attention. Adding an attentional lapse
parameter accounts for trials in which participants are inatten-
tive to the task at hand. Specifically, participants commonly
make errors on trials that should be well within capacity limits
(e.g., set size 1), and adding a lapse parameter can help explain

Fig. 1 Cronbach’s alpha as a function of the number of trials and the
number of participants in Experiment 1. In each cell, Cronbach’s alpha
was computed for t trials (x-axis) and n participants (y-axis). (a) Average

reliabilities across 100 iterations. (b) Minimum reliabilities obtained
(worst random samples of participants and trials)
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these anomalous dips in performance. Unlike typical estimates
of capacity, in which a K value is computed directly for per-
formance for each set size and then averaged, this model uses
a log-likelihood estimation technique that estimates a single

capacity parameter by simultaneously considering perfor-
mance across all set sizes and/or change probability condi-
tions. Critically, this model assumes that data are obtained
for at least one subcapacity set size, and that any error made

Fig. 2 Spearman–Brown-corrected split-half reliability estimates as a
function of the numbers of trials and participants in Experiment 1. (a)
Average reliabilities across 100 iterations. (b) Minimum reliabilities

obtained (worst random samples of participants and trials). (c) Standard
deviations of the reliabilities obtained across samples. (d) Range of reli-
ability values obtained across samples

Fig. 3 Spearman–Brown-corrected split-half reliability estimates for each set size in Experiment 1. Top panels: Average reliabilities for each set size.
Bottom panels: Standard deviations of the reliabilities for each set size across 100 down-sampling iterations
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on this set size reflects an attentional lapse. If the model is fit
to data that lack at least one subcapacity set size (e.g., one or
two items), then the model will fit poorly and provide nonsen-
sical parameter estimates.

Recently, Van Snellenberg, Conway, Spicer, Read, and
Smith (2014) used the fixed capacity + attention model to
calculate capacity for a change detection task, and they found
that the reliability of the model’s capacity parameter was low
(r = .32) and did not correlate with other WM tasks. Critically,
however, this study used only relatively high set sizes (4 and
8) and lacked a subcapacity set size, so model fits were likely
poor. Using code made available by Rouder et al., we fit a
fixed capacity + attention model to our data (Rouder, n.d.).We
found that when this model is misapplied (i.e., used on data
without at least one subcapacity set size), the internal reliabil-
ity of the capacity parameter was low (r uncorrected = .35)
and was negatively correlated with raw change detection ac-
curacy, r = −.25, p = .004. If we had only applied this model to
our data, we would have mistakenly concluded that change
detection measures offer poor reliability and do not correlate
with other measures of WM capacity.

Discussion

Here, we have shown that when sufficient numbers of trials
and participants are collected, the reliability of change detec-
tion capacity is remarkably high (r > .9). On the other hand, a
systematic down-sampling method revealed that insufficient
trials or insufficient participant numbers could dramatically
reduce the reliability obtained in a single experiment. If re-
searchers hope to measure the correlation between visual WM
capacity and some other measure, Figs. 1 and 2 can serve as an
approximate guide to expected reliability. Because we had
only a single sample of the largest n (137), we cannot make
definitive claims about the reliabilities of future samples of
this size. However, given the stabilization of correlation coef-
ficients with large sample sizes and the extremely high corre-
lation coefficient obtained, we can be relatively confident that
the reliability estimate for our full sample (n = 137) would not
change substantially in future samples of university students.
Furthermore, we can make claims about how the reliability of
small, well-defined subsamples of this Bpopulation^ can sys-
tematically deviate from an empirical upper bound.

The average capacity obtained for this sample was slightly
lower than some other values in the literature, typically cited
as around three or four items. The slightly lower average for
this sample could potentially cause some concern about the
generalizability of these reliability values for future samples.
For the present study’s sample, the average K scores for set
sizes 4 and 8 were K = 2.3 and 2.0, respectively. The largest,
most comparable sample to the present sample is a 495-
participant sample in a work by Fukuda, Woodman, and
Vogel (2015). The average K scores for set sizes 4 and 8 were

K = 2.7 and 2.4, respectively, and the task design was nearly
identical (150-ms encoding time, 1,000-ms retention interval,
no color repetitions allowed, and set sizes 4 and 8). The dif-
ference of 0.3–0.4 items between these two samples is rela-
tively small, though likely significant. However, for the pur-
poses of estimating reliability, the variance of the distribution
is more important than the mean. The variabilities observed in
the present sample (SD = 0.7 for set size 4, SD = 0.97 for set
size 8) were very similar to those observed in the Fukuda et al.
sample (SD = 0.6 for set size 4 and SD = 1.2 for set size 8),
though unfortunately the Fukuda et al. study did not report
reliability. Because of the nearly identical variabilities of
scores across these two samples, we can infer that our reliabil-
ity results would indeed generalize to other large samples for
which change detection scores have been obtained.

We recommend applying an iterative down-sampling ap-
proach to other measures when expediency of task adminis-
tration is valued, but reliability is paramount. The stats-savvy
reader may note that the Spearman–Brown prophecy formula
also allows one to calculate how many observations must be
added to improve the expected reliability, according to the
formula

N ¼
ρ*xx0 1−ρ

xx
0

� �

ρ
xx
0 1− ρ*xx0
� �

where ρ*xx0 is the desired correlation strength, ρ
xx
0 is the ob-

served correlation, and N is the number of times that a test
length must be multiplied to achieve the desired correlation
strength. Critically, however, this formula does not account
for the accuracy of the observed correlation. Thus, if one
starts from an unreliable correlation coefficient obtained with
a small number of participants and trials, one will obtain an
unreliable estimate of the number of observations needed to
improve the correlation strength. In experiments such as this
one, both the number of trials and the number of participants
will drastically change estimates of the number of participants
needed to observe correlations of a desired strength.

Let’s take an example from our iterative down-sampling
procedure. Imagine that we ran 100 experiments, each with
15 participants and 150 total trials of change detection. Doing
so, we would obtain 100 different estimates of the strength of
the true split-half correlation. We could then apply the
Spearman-Brown formula to each of these 100 estimates in
order to calculate the number of trials needed to obtain a
desired reliability of r = .8. So doing, we would find that, on
average, we would need around 140 trials to obtain the desired
reliability. However, because of the large variability in the
observed correlation strength (r = .37 to .97), if we had only
run the Bbest case^ experiment (r = .97), we would estimate
that we need only 18 trials to obtain our desired reliability of r
= .8 with 15 participants. On the other hand, if we had run the
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Bworst case^ experiment (r = .37), then we would estimate
that we need 1,030 trials. There are downsides to both types of
estimation errors. Although a pessimistic estimate of the num-
ber of trials needed (>1,000) would certainly ensure adequate
reliability, this might come at the cost of time and participants’
frustration. Conversely, an overly optimistic estimate of the
number of trials needed (<20) would lead to underpowered
studies that would waste time and funds.

Finally, we investigated an alternative parameterization of
capacity based on a model that assumes a fixed capacity and
an attention lapse parameter (Rouder et al., 2008). Critically,
this model attempts to explain errors for set sizes that are well
within capacity limits (e.g., one item). If researchers inappro-
priately apply this model to change detection data with only
large set sizes, they would erroneously conclude that change
detection tasks yield poor reliability and fail to correlate with
other estimates of capacity (e.g., Van Snellenberg et al., 2014).

In Experiment 2, we shifted our focus to the stability of
change detection estimates. That is, how consistent are esti-
mates of capacity from day to day? We collected an unprece-
dented number of sessions of change detection performance
(31) spanning 60 days. We examined the stability of capacity
estimates, defined as the correlation between individuals’ ca-
pacity estimates from one day to the next. Since capacity is
thought to be a stable trait of the individual, we predicted that
individual differences in capacity should be reliable across
many testing sessions.

Experiment 2

Materials and methods

ParticipantsAgroup of 79 individuals (22males, 57 females;
mean age = 22.67 years, SD = 2.31) with normal or corrected-
to-normal vision participated for monetary compensation. The
study was approved by the Ethics Committee of Southwest
University.

Stimuli Some experimental sessions were completed in the
lab and others were completed in participants’ homes. In the
lab, stimuli were presented on monitors with a refresh rate of
75Hz. At home, stimuli were presented on laptop screens with
somewhat variable refresh rates and sizes. In both cases, par-
ticipants sat approximately 60 cm from the screen, though a
chinrest was not used, so all visual angle estimates are approx-
imate. In the lab there were some small variations in monitor
size (five 18.5-in. LCD monitors, one 19-in. LCD monitor) in
the testing rooms, leading to small variations in the sizes of the
colored squares. Details are provided about the approximate
range in degrees of visual angle in the lab.

All stimuli were generated in MATLAB (The MathWorks,
Natick, MA) using the Psychophysics Toolbox (Brainard,
1997). Colored squares (51 pixels; range of 1.28° to 1.46°
visual angle) served as the memoranda. Squares could appear
anywhere within an area of the monitor subtending approxi-
mately 14.4° to 14.8° horizontally and 8.1° to 8.4° vertically.
Squares could appear in any of nine distinct colors (RGB
values: red = 255 0 0; green = 0 255 0; blue = 0 0 255;
magenta = 255 0 255; yellow = 255 255 0; cyan = 0 255
255; orange = 255 128 0; white = 255 255 255; black = 0 0
0). Colors were sampled without replacement for set size 4
and set size 6 trials. Each color could be repeated up to one
time in set size 8 trials (i.e., colors were sampled from a list of
18 colors, with each of the nine unique colors appearing
twice). Participants were instructed to fixate a small black
dot (~0.3° visual angle) at the center of the display.

Procedures Trial procedures for the change detection task
were identical to Experiment 1. Participants completed a total
of 31 sessions of the change detection task. In each session,
participants completed a total of 120 trials (split over five
blocks). There were 40 trials each of set sizes 4, 6, and 8.
Participants were asked to finish the change detection task
once a day for 30 consecutive days. They could do this task
on their own computers or on the experimenters’ computers
throughout the day. Participants were instructed that they
should complete the task in a relatively quiet environment
and not do anything else (e.g., talking to others) at the same
time. Experimenters reminded the participants to finish the
task and collected the data files every day.

Results

Descriptive statistics Descriptive statistics for the average K
values across the 31 sessions are shown in Table 2. Across all
sessions, the average capacity was 2.83 (SD = 0.23). Change
in mean capacity over time is shown in Fig. 4a. A repeated
measures ANOVA revealed a significant difference in capac-
ity across sessions, F(18.76, 1388.38)1 = 15.04, p < .001, ηp

2

= .169. Participants’ performance initially improved across
sessions, then leveled off. The group-average increase in ca-
pacity over time is well-described by a two-term exponential
model (SSE = .08, RMSE = .06, adjusted R2 = .94), described
by the equation y = 2.776 × e.003x − 0.798 × e−.26x. To test the
impression that individuals’ improvement slowed over time,
we fit several growth curve models to the data using maxi-
mum likelihood estimation (fitmle.m) with Subject entered as
a random factor. We coded time as days from the first session
(Session 1 = 0). Model A included only a random intercept,
Model B included a random intercept and a random linear

1 Greenhouse–Geisser values reported when Mauchly’s test of sphericity is
violated.
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effect of time,Model C added in a quadratic effect of time, and
Model D added a cubic effect of time. As is shown in Table 3,
the quadratic model provided the best fit to the data. Further
testing revealed that both random slopes and intercepts were
needed to best fit the data (see Table 4, comparing Models
C1–C4). That is, participants started out with different base-
line capacity values, and they improved at different rates.
However, the covariance matrix for Model C revealed no sys-
tematic relationship between initial capacity (intercept) and
either the linear effect of time, r = .21, 95% CI [−.10, .49] or
the quadratic effect of time, r = −.14, 95% CI [−.48, .24]. This
suggests that there was no meaningful relationship between a

participant’s initial capacity and that participant’s rate of im-
provement. To visualize this point, we did a quartile split of
Session 1 performance and then plotted the change for each of
each group (Fig. 4).

Within-session reliability Within-session reliability was
assessed using Cronbach’s alpha and split-half correlations.
Cronbach’s alpha (using single-trial accuracy as items)
yielded an average within-session reliability of α = .76 (SD
= .04, min. = .65, max. = .83). Equivalently, spit-half correla-
tions on K scores calculated from even versus odd trials re-
vealed an average Spearman–Brown-corrected reliability of r
= .76 (SD = .06, min. = .62, max. = .84). As in Experiment 1,
using raw errors (Cronbach’s alpha) versus bias-adjusted ca-
pacity measures (Cowan’s K) did not affect the reliability es-
timates. Within-session reliability increased slightly over time
(Fig. 5). Cronbach’s alpha values were positively correlated
with session number (1–31), r = .82, p < .001, 95% CI [.66,
.91], as were the split-half correlation values, r = .67, p < .001,
95% CI [.42, .83].

Between-session stability We first assessed stability over
time by computing correlation coefficients for all pairwise
combinations of sessions (465 total combinations). Missing
sessions were excluded from the correlations, meaning that
some pairwise correlations included 78 participants instead
of 79 (see Table 2). All sessions correlated with each other,
mean r = .71 (SD = .06, min. = .48, max. = .86, all p values <
.001). A heat map of all pairwise correlations is shown in
Fig. 6. Note that the most temporally distant sessions still
correlated with each other. The correlation between Day 1
and Day 30 (28 intervening sessions) was r = .53, p < .001,
95% CI [.35, .67]; the correlation between Day 30 and Day 60
(no intervening sessions) was r = .81, p < .001, 95% CI [.72,
.88]; the correlation between Day 1 and Day 60 was r = .59, p
< .001, 95% CI [.42, .71]. Finally, we observed that between-
session stability increased over time, likely due to increased
internal reliability across sessions. To compute change in
reliability over time, we calculated the correlation coeffi-
cient for temporally adjacent sessions (e.g., the correlations
of Session 1 and Session 2, of Session 2 and Session 3,
etc.). The average adjacent-session correlation was r = .76
(SD = .05, min. = .64, max. = .86), and the strength of
adjacent-session correlations was positively correlated with
session number, r = .68, p < .001, indicating an increase
in stability over time.

Differences by testing locationWe tested for systematic dif-
ferences in performance, reliability, and stability for sessions
completed at home versus in the lab. In total, 41 of the partic-
ipants completed all of their sessions in their own home
(Bhome group^), 27 participants completed all of their

Table 2 Descriptive statistics for Experiment 2

N Mean SD Minimum Maximum Kurtosis Skewness

Day 1 79 2.15 0.85 0.40 4.03 −0.69 0.24

Day 2 79 2.36 0.86 0.07 3.97 −0.24 −0.32
Day 3 79 2.43 0.82 0.80 4.07 −0.62 −0.29
Day 4 78 2.51 0.85 0.40 4.10 −0.31 −0.31
Day 5 79 2.52 0.93 0.57 4.27 −0.55 −0.13
Day 6 79 2.74 0.92 0.53 4.60 −0.39 −0.20
Day 7 79 2.73 0.91 0.67 4.63 −0.88 −0.09
Day 8 79 2.66 0.87 1.03 4.70 −0.66 0.06

Day 9 79 2.81 0.92 0.50 5.07 −0.18 −0.19
Day 10 79 2.86 0.94 0.77 4.70 −0.84 0.01

Day 11 78 2.79 0.94 0.40 4.27 −0.51 −0.55*
Day 12 79 2.83 1.01 −0.10 4.80 −0.38 −0.37
Day 13 78 2.85 0.96 0.37 4.80 −0.57 −0.21
Day 14 79 3.01 0.95 0.93 5.03 −0.46 −0.11
Day 15 78 2.85 0.92 0.37 4.37 0.12 −0.73*
Day 16 79 2.91 0.92 0.23 4.90 −0.05 −0.35
Day 17 79 2.84 0.90 0.87 4.77 −0.51 −0.18
Day 18 79 2.93 1.02 0.53 4.73 −0.40 −0.23
Day 19 79 2.90 0.92 0.87 4.57 −0.69 −0.24
Day 20 79 2.94 0.92 0.47 4.93 −0.03 −0.32
Day 21 79 2.98 0.94 0.80 4.90 −0.08 −0.47
Day 22 79 2.99 0.98 0.83 4.90 −0.65 −0.23
Day 23 79 2.86 1.05 0.23 5.47 −0.17 −0.14
Day 24 78 3.00 0.98 0.97 4.77 −0.74 −0.26
Day 25 79 3.04 0.95 0.67 5.03 −0.41 −0.16
Day 26 79 3.01 0.93 0.43 5.07 −0.28 −0.34
Day 27 79 3.09 1.06 0.43 5.00 −0.51 −0.29
Day 28 79 3.04 0.97 0.33 4.83 −0.22 −0.48
Day 29 79 3.01 1.04 0.77 5.07 −0.38 −0.33
Day 30 79 3.02 1.05 0.33 5.00 −0.48 −0.29
Day 60 79 3.00 1.08 −0.13 5.40 0.29 −0.58*

Descriptive statistics are shown separately for each set size and for the
average of the three set sizes. Kurtosis and skewness values are both
centered around 0. Asterisks denote credible deviations from normality
(Cramer, 1997). Lower N values for a few of the days are highlighted in
bold.
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sessions in the lab (Blab group^), and 11 participants complet-
ed some sessions at home and some in the lab (Bmixed
group^).

Across all 31 sessions, the participants in the home group had
an average capacity of 2.67 (SD = 1.01); those in the lab group
had an average capacity of 3.01 (SD = 0.83); and those in the
mixed group had an average capacity of 2.98 (SD = 1.04). On
average, scores for sessions in the home group were slightly
lower than scores for sessions in the lab group, t(2101) = −7.98,
p < .001, 95% CI [−.42, −.25]. Scores for sessions in the mixed
group were higher than those for sessions in the home group,
t(1606) = 5.0, p < .001, 95%CI [.19, .43] but were not different
from scores in the lab group, t(1175) = 0.44, p = .67, 95% CI
[−.09, .14]. Interestingly, however, a paired t test for the mixed
group (n = 11) revealed that the same participants performed
slightly better in the lab (M = 3.08) and slightly worse at home,
M = 2.85, t(10) = 3.15, p = .01, 95% CI [.07, .39].

Cronbach’s alpha estimates of within-session reliability
were slightly higher for sessions completed at home (mean
α = .76, SD = .05) than for sessions completed in the lab
(mean α = .69, SD = .08), t(60) = 3.75, p < .001, 95% CI
[.03, .10]. Likewise, Spearman–Brown-corrected correlation
coefficients were higher for sessions completed at home
(mean r = .79, SD = .07) than for those in the lab (mean r =

.67, SD = .14), t(60) = 4.42, p < .001, 95% CI [.07, .18].
However, these differences in reliability may have resulted
from (1) unequal sample sizes between lab and home, (2)
unequal average capacities between groups, or (3) unequal
variabilities between groups. Once we equated sample sizes
between groups and matched samples for average capacity,
the differences in reliability were no longer stable: Across
iterations of the matched samples, differences in Cronbach’s
alpha ranged from p < .01 to p > .5, and differences in split-
half correlation significance ranged from p < .01 to p > .25.

Next, we examined differences in stability for sessions
completed at home rather than in the lab. On average, test–
retest correlations were higher for home sessions (mean r =
.72, SD = .08) than for lab sessions (mean r = .67, SD = .10),
t(928) = 8.01, p < .001, 95% CI [.04, .06]. Again, however,
differences in the test–retest correlations were not reliable after
matching sample size and average capacity; differences in
correlation significance ranged from p = .01 to .98.

Discussion

With extensive practice over multiple sessions, we observed
improvement in overall change detection performance. This
improvement was most pronounced over early sessions, after
which mean performance stabilized for the remaining

Fig. 4 Average capacity (K) across testing sessions. Shaded areas
represent standard error of the mean. Note that the axis is spliced
between Days 30 and 60, because no intervening data points were

collected during this time. (Left) Average changes in performance over
time. (Right) Average changes in performance over time for each quartile
of participants (quartile splits were performed on data from Session 1)

Table 3 Comparison of linear, quadratic, and cubic growth models, all with random intercepts and slopes where applicable

Model A: Intercept Only Model B: Linear Model C: Quadratic Model D: Cubic

Intercept 2.83*** 2.60*** 2.42*** 2.29***

Linear slope 0.014*** .037*** .07**

Quadratic slope –.0005*** –.002*

Cubic slope 2 × 10−5 n.s.

−2LL 4,366.2 4,084.8 3,914.7 4,231.6

BIC 4,389.6 4,131.6 3,992.7 4,348.6

* p < .05, ** p < .01, *** p < .001
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sessions. The internal reliability of the first session (Spearman–
Brown-corrected r = .71, Cronbach’s α = .67) was within the
range predicted by the look-up table created in Experiment 1 for
80 participants and 120 trials (predicted range: r = .61 to .87 and
α = .58 to .80, respectively). Both reliability and stability
remained high over the span of 60 days. In fact, reliability
and stability increased slightly across sessions. An important
consideration for any cognitive measure is whether or not re-
peated exposure to the task will harm the reliability of the mea-
sure. For example, re-exposure to the same logic puzzles will
drastically reduce the amount of time needed to solve the puz-
zles and inflate accuracy. Thus, for such tasks great caremust be
taken to generate novel test versions to be administered at dif-
ferent dates. Similarly, over-practice effects could lead to a
sharp decrease in variability of performance (e.g., ceiling ef-
fects, floor effects), which would by definition lead to a de-
crease in reliability. Here, we demonstrated that although ca-
pacity estimates increase when participants are frequently ex-
posed to a change detection task, the reliability of themeasure is
not compromised by either practice effects or ceiling effects.

We also examined whether reliability was harmed for par-
ticipants who completed the change detection sessions in their
own homes as compared to those in the lab. Although remote
data collection sacrifices some degree of experimental control,
the use of at-home tests is becoming more common with the
ease of remote data collection through resources like

Amazon’s Mechanical Turk (Mason & Suri, 2012).
Reliability was not noticeably disrupted by noise arising from
small differences in stimulus size between different testing
environments. After controlling for number of participants
and capacity, there was no longer a consistent difference in
reliability or stability for sessions completed at home as com-
pared to in the lab. However, the capacity estimates obtained
in participants’ homes were significantly lower than those
obtained in the lab. Larger sample sizes will be needed tomore
fully investigate systematic differences in capacity and reli-
ability between testing environments.

General discussion

In Experiment 1, we developed a novel approach for estimating
expected reliability in future experiments. We collected change
detection data from a large number of participants and trials,
and then we used an iterative down-sampling procedure to in-
vestigate the effect of sample size and trial number on reliabil-
ity. Average reliability across iterations was fairly impervious to
the number of participants. Instead, average reliability estimates
across iterations relied more heavily on the number of trials per
participant. On the other hand, the variability of reliability esti-
mates across iterations was highly sensitive to the number of
participants. For example, with only ten participants, the aver-
age reliability estimate for an experiment with 150 trials was
high (α = .75) but the worst iteration (akin to the worst expected
experiment out of 100) gave a poor reliability estimate (α =
.42). On the other hand, the range between the best and worst
reliability estimates decreased dramatically as the number of
participants increased. With 40 participants, the minimum ob-
served reliability for 150 trials was α = .65.

Fig. 5 Change in within-session reliabilities across sessions in Experiment 2. There was a significant positive relationship between session number
(1:31) and internal reliability

Table 4 Comparison of fixed versus random slopes and intercept

Model C1:
Fixed Int.
Fixed Slope

Model C2:
Fixed Int.
Random Slope

Model C3:
Random Int.
Fixed Slope

Model C4:
Random Int.
Random Slope

−2LL 6,672.3 4,627.7 4,009.1 3,914.7

BIC 6,703.5 4,682.3 4,048.1 3,992.7
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In Experiment 2, we examined the reliability and stability
of change detection capacity estimates across an unprecedent-
ed number of testing sessions. Participants completed 31 ses-
sions of single-probe change detection. The first 30 sessions
took place over 30 consecutive days, and the last session took
place 30 days later (Day 60). Average internal reliability for
the first session was in the range predicted by the look-up table
in Experiment 1. Despite improvements in performance
across sessions, between-subjects variability in K remained
stable over time (average test–retest between all 31 sessions
was r = .76; the correlation for the two most distant sessions,
Day 1 and Day 60, was r = .59). Interestingly, both within-
session reliability and between-session reliability increased
across sessions. Rather than diminishing due to practice, reli-
ability of WM capacity estimates increased across many
sessions.

The present work has implications for planning studies
with novel measures and for justifying the inclusion of
existing measures into clinical batteries such as the Research
Domain Criteria (RDoC) project (Cuthbert & Kozak, 2013;
Rodebaugh et al., 2016). For basic research, an internal reli-
ability of .7 is considered a sufficient Brule of thumb^ for
investigating correlational relationship between measures
(Nunnally, 1978). Although this level of reliability (or even
lower) will allow researchers to detect correlations, it is not
sufficient to confidently assess the scores of individuals. For
that, reliability in excess of .9 or even .95 is desirable
(Nunnally, 1978). Here, we demonstrate how the number of

trials can alter the reliability of WM capacity estimates; with
relatively few trials (~150, around 10 min of task time),
change detection estimates are sufficiently reliable for corre-
lation studies (α ~ .8), but many more trials are needed (~500)
to boost reliability to the level needed to assess individuals (α
~ .9). Another important consideration for a diagnostic mea-
sure is its reliability across multiple testing sessions. Some
tasks lose their diagnostic value once individuals have been
exposed to them once or twice. Here we demonstrate that
change detection estimates of WM capacity are stable, even
when participants are well-practiced on the task (3,720 trials
over 31 sessions).

One challenge in estimating the Btrue^ reliability of a cog-
nitive task is that reliability depends heavily on sample char-
acteristics. As we have demonstrated, varying the sample size
and number of trials can yield very different estimates of the
reliability for a perfectly identical task. Other sample charac-
teristics can likewise affect reliability; the most notable of
these is sample homogeneity. The sample used here was a
large sample of university students, with a fairly wide range
in capacities (approximately 0.5–4 items). Samples using only
a subset of this capacity range (e.g., clinical patient groups
with very low capacity) will be less internally reliable because
of the restricted range of the subpopulation. Indeed, in
Experiment 1 we found that sampling iterations with poor
reliability tended to have lower variability and a smaller range
of scores. Thus, carefully recording sample size, mean, stan-
dard deviation, and internal reliability in all experiments will

Fig. 6 Correlations between sessions. (Left) Correlations between all
possible pairs of sessions. Colors represent the correlation coefficients
of the capacity estimates from each possible pairwise combination of
the 31 sessions. All correlation values were significant, p < .001.

(Right) Illustration of the sessions that were most distant in time: Day 1
correlated with Day 30 (28 intervening sessions), and Day 30 correlated
with Day 60 (no intervening sessions)
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be critical for assessing and improving the reliability of stan-
dardized tasks used for cognitive research. In the interest of
replicability, open source code repositories (e.g., the
Experiment Factory) have sought to make standardized ver-
sions of common cognitive tasks better-categorized, open, and
easily available (Sochat et al., 2016). However, one potential
weakness for task repositories is a lack of documentation
about expected internal reliability. Standardization of tasks
can be very useful, but it should not be over-applied. In par-
ticular, experiments with different goals should use different
test lengths that best suit the goals of the experimental ques-
tion. We feel that projects such as the Experiment Factory will
certainly lead to more replicable science, and including esti-
mates of reliability with task code could help to further this
goal.

Finally, the results presented here have implications for
researchers who are interested in differences between experi-
mental conditions and not individual differences per se. Trial
number and sample size will affect the degree of measurement
error for each condition used within change detection experi-
ments (e.g., set sizes, distractor presence, etc.). To detect sig-
nificant differences between conditions and avoid false posi-
tives, it would be desirable to estimate the number of trials
needed to ensure adequate internal reliability for each condi-
tion of interest within the experiment. Insufficient trial num-
bers or sample sizes can lead to intolerably low internal reli-
ability, and could spoil an otherwise well-planned experiment.

The results of Experiments 1 and 2 revealed that change
detection capacity estimates of visual WM capacity are both
internally reliable and stable across many testing sessions.
This finding is consistent with previous studies showing that
other measures ofWMcapacity are reliable and stable, includ-
ing complex span measures (Beckmann, Holling, & Kuhn,
2007; Foster et al., 2015; Klein & Fiss, 1999; Waters &
Caplan, 1996) and the visuospatial n-back (Hockey &
Geffen, 2004). The main analyses from Experiment 1 suggest
concrete guidelines for designing studies that require reliable
estimates of change detection capacity. When both sample
size and trial numbers were high, the reliability of change
detection was quite high (α > .9). However, studies with in-
sufficient sample sizes or number of trials frequently had low
internal reliability. Consistent with the notion that WM capac-
ity is a stable trait of the individual, individual differences in
capacity remained stable over many sessions in Experiment 2
despite practice-related performance increases.

Both the effects of trial number and sample size are impor-
tant to consider, and researchers should be cautious about
generalizing expected reliability across vastly different sample
sizes. For example, in a recent article by Foster and colleagues
(2015), the authors found that cutting the number of complex
span trials by two-thirds had only a modest effect on the
strength of the correlation between WM capacity and fluid
intelligence. Critically, however, the authors used around

500 participants, and such a large sample size will act as a
buffer against increases in measurement error (i.e., fewer trials
per participant). Readers wishing to conduct a new study with
a smaller sample size (e.g., 50 participants) would be ill-
advised to dramatically cut trial numbers on the basis of this
finding alone; as we demonstrated in Experiment 1, cutting
trial numbers leads to greater volatility of reliability values for
small sample sizes relative to large ones. Given the current
concerns about power and replicability in psychological re-
search (Open Science Collaboration, 2015), we suggest that
rigorous estimations of task reliability, considering both par-
ticipant and trial numbers, will be useful for planning both
new studies and replication efforts.

Acknowledgements

Contributions Z.X. and E.V. designed the experiments; Z.X. and X.F.
collected data. K.A. performed the analyses and drafted the manuscript,
and K.A., Z.X., and E.V. revised the manuscript.

Author note Research was supported by the Project of Humanities and
Social Sciences, Ministry of Education, China (15YJA190008), the
Fundamental Research Funds for the Central Universities
(SWU1309117), NIH Grant 2R01 MH087214-06A1, and Office of
Naval Research Grant N00014-12-1-0972. Datasets for all experiments
are available online on Open Science Framework at https://osf.io/g7txf/.

Compliance with ethical standards

Conflicts of interest None.

References

Beckmann, B., Holling, H., & Kuhn, J.-T. (2007). Reliability of verbal–
numerical working memory tasks. Personality and Individual
Differences, 43, 703–714. doi:10.1016/j.paid.2007.01.011

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10,
433–436. doi:10.1163/156856897X00357

Brown,W. (1910). Some experimental results in the correlation of mental
abilities. British Journal of Psychology, 1904–1920(3), 296–322.
doi:10.1111/j.2044-8295.1910.tb00207.x

Buschman, T. J., Siegel, M., Roy, J. E., & Miller, E. K. (2011). Neural
substrates of cognitive capacity limitations. Proceedings of the
National Academy of Sciences, 108, 11252–11255. doi:10.1073/
pnas.1104666108

Cowan, N. (2001). The magical number 4 in short-term memory: A
reconsideration of mental storage capacity. Behavioral and Brain
Sciences 24, 87–114–185. doi:10.1017/S0140525X01003922

Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S.
(2006). Scope of attention, control of attention, and intelligence in
children and adults. Memory & Cognition, 34, 1754–1768. doi:10.
3758/BF03195936

Cramer, D. (1997). Basic statistics for social research: Step-by-step cal-
culations and computer techniques using Minitab. London:
Routledge.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of
tests. Psychometrika, 16, 297–334. doi:10.1007/BF02310555

Behav Res (2018) 50:576–588 587

https://osf.io/g7txf/
http://dx.doi.org/10.1016/j.paid.2007.01.011
http://dx.doi.org/10.1163/156856897X00357
http://dx.doi.org/10.1111/j.2044-8295.1910.tb00207.x
http://dx.doi.org/10.1073/pnas.1104666108
http://dx.doi.org/10.1073/pnas.1104666108
http://dx.doi.org/10.1017/S0140525X01003922
http://dx.doi.org/10.3758/BF03195936
http://dx.doi.org/10.3758/BF03195936
http://dx.doi.org/10.1007/BF02310555


Cuthbert, B. N., & Kozak, M. J. (2013). Constructing constructs for
psychopathology: The NIMH research domain criteria. Journal of
Abnormal Psychology, 122, 928–937. doi:10.1037/a0034028

Elmore, L. C.,Magnotti, J. F., Katz, J. S., &Wright, A. A. (2012). Change
detection by rhesus monkeys (Macaca mulatta) and pigeons
(Columba livia). Journal of Comparative Psychology, 126, 203–
212. doi:10.1037/a0026356

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A.
(1999). Working memory, short-term memory, and general fluid
intelligence: A latent-variable approach. Journal of Experimental
Psychology: General, 128, 309–331. doi: 10.1037/0096-3445.128.
3.309

Foster, J. L., Shipstead, Z., Harrison, T. L., Hicks, K. L., Redick, T. S., &
Engle, R. W. (2015). Shortened complex span tasks can reliably
measure working memory capacity. Memory & Cognition, 43,
226–236. doi:10.3758/s13421-014-0461-7

Fukuda, K., Vogel, E., Mayr, U., & Awh, E. (2010). Quantity, not quality:
The relationship between fluid intelligence and working memory
capacity. Psychonomic Bulletin & Review, 17, 673–679. doi:10.
3758/17.5.673

Fukuda, K., Woodman, G. F., & Vogel, E. K. (2015). Individual differ-
ences in visual working memory capacity: Contributions of atten-
tional control to storage. In P. Jolicœur, C. Lefebvre, & J. Martinez-
Trujillo (Eds.), Mechanisms of sensory working memory: Attention
and performance XXV (pp. 105–119). San Diego: Academic Press
Elsevier.

Gibson, B., Wasserman, E., & Luck, S. J. (2011). Qualitative similarities
in the visual short-term memory of pigeons and people.
Psychonomic Bulletin & Review, 18, 979–984. doi:10.3758/
s13423-011-0132-7

Gold, J. M., Wilk, C. M., McMahon, R. P., Buchanan, R. W., & Luck, S.
J. (2003). Working memory for visual features and conjunctions in
schizophrenia. Journal of Abnormal Psychology, 112, 61–71. doi:
10.1037/0021-843X.112.1.61

Hockey, A., & Geffen, G. (2004). The concurrent validity and test-retest
reliability of a visuospatial working memory task. Intelligence, 32,
591–605. doi: 10.1016/j.intell.2004.07.009

Johnson, M. K., McMahon, R. P., Robinson, B. M., Harvey, A. N., Hahn,
B., Leonard, C. J., & Gold, J. M. (2013). The relationship between
working memory capacity and broad measures of cognitive ability
in healthy adults and people with schizophrenia. Neuropsychology,
27, 220–229. doi:10.1037/a0032060

Klein, K., & Fiss, W. H. (1999). The reliability and stability of the Turner
and Engle working memory task. Behavior Research Methods,
Instruments, & Computers, 31, 429–432. doi:10.3758/BF03200722

Lee, E.-Y., Cowan, N., Vogel, E. K., Rolan, T., Valle-Inclan, F., &
Hackley, S. A. (2010). Visual working memory deficits in patients
with Parkinson’s disease are due to both reduced storage capacity
and impaired ability to filter out irrelevant information. Brain, 133,
2677–2689. doi:10.1093/brain/awq197

Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral
delay activity as a neural measure of visual working memory.
Neuroscience & Biobehavioral Reviews, 62, 100–108. doi:10.
1016/j.neubiorev.2016.01.003

Mason, W., & Suri, S. (2012). Conducting behavioral research on
Amazon’s Mechanical Turk. Behavior Research Methods, 44, 1–
23. doi:10.3758/s13428-011-0124-6

Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training
effective? A meta-analytic review. Developmental Psychology, 49,
270–291. doi:10.1037/a0028228

Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York:
McGraw-Hill.

Open Science Collaboration. (2015). Estimating the reproducibility of
psychological science. Science, 349, aac4716. doi:10.1126/science.
aac4716

Pailian, H., & Halberda, J. (2015). The reliability and internal consistency
of one-shot and flicker change detection for measuring individual
differences in visual working memory capacity. Memory &
Cognition, 43, 397–420. doi:10.3758/s13421-014-0492-0

Pashler, H. (1988). Familiarity and visual change detection. Perception &
Psychophysics, 44, 369–378. doi:10.3758/BF03210419

Reinhart, R. M. G., Heitz, R. P., Purcell, B. A., Weigand, P. K., Schall, J.
D., & Woodman, G. F. (2012). Homologous mechanisms of visuo-
spatial working memory maintenance in macaque and human: prop-
erties and sources. Journal of Neuroscience, 32, 7711–7722. doi:10.
1523/JNEUROSCI.0215-12.2012

Rodebaugh, T. L., Scullin, R. B., Langer, J. K., Dixon, D. J., Huppert, J.
D., Bernstein, A., & Lenze, E. J. (2016). Unreliability as a threat to
understanding psychopathology: The cautionary tale of attentional
bias. Journal of Abnormal Psychology, 125, 840–851. doi:10.1037/
abn0000184

Rouder, J. N. (n.d.). Applications and source code. Retrieved June 22,
2016, from http://pcl.missouri.edu/apps

Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., &
Pratte, M. S. (2008). An assessment of fixed-capacity models of
visual working memory. Proceedings of the National Academy of
Sciences, 105, 5975–5979. doi:10.1073/pnas.0711295105

Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to
measure working memory capacity in the change detection para-
digm. Psychonomic Bulletin & Review, 18, 324–330. doi:10.3758/
s13423-011-0055-3

Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory
training effective? Psychological Bulletin, 138, 628–654. doi:10.
1037/a0027473

Sochat, V. V., Eisenberg, I. W., Enkavi, A. Z., Li, J., Bissett, P. G., &
Poldrack, R. A. (2016). The experiment factory: Standardizing be-
havioral experiments. Frontiers in Psychology, 7, 610. doi:10.3389/
fpsyg.2016.00610

Spearman, C. (1910). Correlation calculated from faulty data. British
Journal of Psychology, 1904–1920(3), 271–295. doi:10.1111/j.
2044-8295.1910.tb00206.x

Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term
memory in human posterior parietal cortex. Nature, 428, 751–754.
doi:10.1038/nature02466

Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working
memory and fluid intelligence: Capacity, attention control, and sec-
ondary memory retrieval. Cognitive Psychology, 71, 1–26. doi:10.
1016/j.cogpsych.2014.01.003

Van Snellenberg, J. X., Conway, A. R. A., Spicer, J., Read, C., & Smith,
E. E. (2014). Capacity estimates inworkingmemory: Reliability and
interrelationships among tasks. Cognitive, Affective, & Behavioral
Neuroscience, 14, 106–116. doi:10.3758/s13415-013-0235-x

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts indi-
vidual differences in visual working memory capacity. Nature, 428,
748–751. doi:10.1038/nature02447

Waters, G. S., & Caplan, D. (1996). The measurement of verbal working
memory capacity and its relation to reading comprehension.
Quarterly Journal of Experimental Psychology, 49A, 51–75. doi:
10.1080/713755607

Wood, G., Hartley, G., Furley, P. A., & Wilson, M. R. (2016). Working
memory capacity, visual attention and hazard perception in driving.
Journal of Applied Research inMemory and Cognition, 5, 454–462.
doi:10.1016/j.jarmac.2016.04.009

588 Behav Res (2018) 50:576–588

http://dx.doi.org/10.1037/a0034028
http://dx.doi.org/10.1037/a0026356
http://dx.doi.org/10.1037/0096-3445.128.3.309
http://dx.doi.org/10.1037/0096-3445.128.3.309
http://dx.doi.org/10.3758/s13421-014-0461-7
http://dx.doi.org/10.3758/17.5.673
http://dx.doi.org/10.3758/17.5.673
http://dx.doi.org/10.3758/s13423-011-0132-7
http://dx.doi.org/10.3758/s13423-011-0132-7
http://dx.doi.org/10.1037/0021-843X.112.1.61
http://dx.doi.org/10.1016/j.intell.2004.07.009
http://dx.doi.org/10.1037/a0032060
http://dx.doi.org/10.3758/BF03200722
http://dx.doi.org/10.1093/brain/awq197
http://dx.doi.org/10.1016/j.neubiorev.2016.01.003
http://dx.doi.org/10.1016/j.neubiorev.2016.01.003
http://dx.doi.org/10.3758/s13428-011-0124-6
http://dx.doi.org/10.1037/a0028228
http://dx.doi.org/10.1126/science.aac4716
http://dx.doi.org/10.1126/science.aac4716
http://dx.doi.org/10.3758/s13421-014-0492-0
http://dx.doi.org/10.3758/BF03210419
http://dx.doi.org/10.1523/JNEUROSCI.0215-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.0215-12.2012
http://dx.doi.org/10.1037/abn0000184
http://dx.doi.org/10.1037/abn0000184
http://pcl.missouri.edu/apps
http://dx.doi.org/10.1073/pnas.0711295105
http://dx.doi.org/10.3758/s13423-011-0055-3
http://dx.doi.org/10.3758/s13423-011-0055-3
http://dx.doi.org/10.1037/a0027473
http://dx.doi.org/10.1037/a0027473
http://dx.doi.org/10.3389/fpsyg.2016.00610
http://dx.doi.org/10.3389/fpsyg.2016.00610
http://dx.doi.org/10.1111/j.2044-8295.1910.tb00206.x
http://dx.doi.org/10.1111/j.2044-8295.1910.tb00206.x
http://dx.doi.org/10.1038/nature02466
http://dx.doi.org/10.1016/j.cogpsych.2014.01.003
http://dx.doi.org/10.1016/j.cogpsych.2014.01.003
http://dx.doi.org/10.3758/s13415-013-0235-x
http://dx.doi.org/10.1038/nature02447
http://dx.doi.org/10.1080/713755607
http://dx.doi.org/10.1016/j.jarmac.2016.04.009

	The reliability and stability of visual working memory capacity
	Abstract
	Overview of experiments
	Experiment 1
	Materials and method
	Results
	Discussion

	Experiment 2
	Materials and methods
	Results
	Discussion

	General discussion
	References


