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Abstract 
 

A hallmark of episodic memory is the phenomenon of mentally re-experiencing the 
details of past events, and a well-established concept is that the neuronal activity that mediates 
encoding is reinstated at retrieval. Evidence for reinstatement has come from multiple 
modalities, including functional Magnetic Resonance Imaging (fMRI) and 
electroencephalography (EEG). These EEG studies have shed light on the time-course of 
reinstatement, but have been limited to distinguishing between a few categories and/or limited 
measures of memory strength. The goal of this work was to investigate whether recently 
developed experimental and technical approaches, namely an inverted encoding model applied 
to alpha oscillatory power in conjunction with sensitive tests of memory retrieval in a 
continuous space, can track and reconstruct memory retrieval of specific spatial locations. In 
Experiment 1, we establish that an inverted encoding model applied to multivariate alpha 
topography can track retrieval of precise spatial memories. In Experiment 2, we demonstrate 
that the pattern of multivariate alpha activity at study is similar to the pattern observed during 
retrieval. Finally, we observe that these encoding models predict memory retrieval behavior, 
including the accuracy and latency of recall. These findings highlight the broad potential for 
using encoding models to characterize long-term memory retrieval.  
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Introduction 

 
Episodic memory is defined by the phenomenon of re-experiencing the details of past 

events, and is thought to be supported by the reactivation of neural activity that was present at 
encoding. In line with this view, functional magnetic resonance imaging (fMRI) studies have 
shown that sensory regions involved in the initial processing of information are re-engaged at 
retrieval (Wagner et al. 2005; Danker & Anderson, 2010), and that the voxel-wise patterns of 
activity within these regions resembles activity seen during encoding (Ritchey et al. 2013; Bosch 
et al. 2014; Hindy et al. 2016). In addition, more time-resolved measures of neural activity such 
as electroencephalography (EEG) and magnetoencephalography (MEG) have shown that 
retrieval-related neural activity echoes the broad strokes of encoding-related activity, such as 
the category of the paired associate (Wimber et al. 2012; Morton et al. 2013; Jafarpour et al. 
2014; Waldhauser et al. 2016) or the task performed at encoding (Johnson et al. 2015). 
However, an open question is whether EEG activity can provide a temporally resolved means of 
tracking the retrieval of precise feature values that are associated with specific items. 

 
Here, we addressed this question by measuring EEG activity during the encoding and 

recall of spatial information from long-term memory (LTM). To reconstruct the spatial 
representations in a precise manner, we applied an inverted encoding model (IEM) to the 
topography of oscillatory activity on the scalp. IEMs have provided a useful approach for 
reconstructing precise spatial representations from fMRI and EEG activity (Sprague and 
Serences 2013; Sprague et al. 2014, 2016; Foster et al. 2016; Foster, Sutterer, et al. 2017). 
However, this approach has not yet been applied to the study of long-term memory; therefore, 
it is an open question whether it is possible to track retrieval of spatial long-term memories by 
applying an IEM to EEG activity. Furthermore, it is unclear which frequency bands would carry 
this spatially specific information. On the one hand, previous work using an IEM applied to 
alpha-band EEG activity, has successfully tracked covert spatial attention (Foster, Sutterer, et al. 
2017), and spatial representations maintained in working memory(Foster et al. 2016; Foster, 
Bsales, et al. 2017). Recent theories about the role of rhythmic oscillations in memory maintain 
that same frequencies of oscillations coordinate specific cognitive operations at encoding and 
retrieval (Siegel et al. 2012; Watrous and Ekstrom 2014; Watrous et al. 2015), predicting that 
alpha-band activity may play a similar role at retrieval. In addition, alpha-band activity has been 
shown to track hemifield-specific location memory (Stokes et al. 2012; Waldhauser et al. 2016). 
On the other hand, other frequency bands, especially theta and beta, are known to play 
important roles in long-term memory encoding and retrieval (Nyhus and Curran 2010; Morton 
et al. 2013; Hsieh and Ranganath 2014; Morton and Polyn 2017) and spatial navigation 
(Watrous et al. 2011; Bohbot et al. 2017). It is also possible that a combination of these 
frequencies carry spatially specific information. Thus, we investigated whether precise spatially 
specific information is reinstated during long-term memory retrieval, and, if so, which 
frequency bands carry this information.  
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In two experiments, participants learned to associate objects with specific angular 
locations. Then, they were asked to precisely report the associated location when presented 
with an object cue. This continuous recall procedure enabled a fine-grained measurement of 
mnemonic performance, and recent work has shown that modeling of the response error 
distribution can provide robust indices of the probability and precision of the stored 
representations (Zhang and Luck 2008; Harlow and Yonelinas 2014; Richter et al. 2016; Sutterer 
and Awh 2016). The IEM analysis revealed that spatially specific oscillatory activity tracked the 
retrieved locations after the presentation of the object cue. Consistent with oscillatory 
reinstatement accounts, we primarily observed spatially specific patterns of activity in the alpha 
band, just as observed in past studies of spatial working memory (Foster et al. 2016; Foster, 
Bsales, et al. 2017). Moreover, the alpha-band patterns observed during retrieval matched 
those observed during the initial encoding of the objects, in line with the hypothesis that 
encoding-related oscillatory patterns were reinstated during retrieval from LTM. Finally, the 
selectivity of alpha-band activity tracked memory performance as learning progressed as well 
as the latency with which participants reported the target locations.  Together these findings 
suggest that LTM retrieval yields a reinstatement of the spatially specific oscillatory activity that 
is observed during encoding, and that multivariate analysis of alpha-band activity provides a 
powerful measure of the timing and success of this basic cognitive process. 

 
Materials and Methods 

 
Participants. Sixty-nine adults (33 in Experiment 1, and 36 in Experiment 2; 18–35 years 

old, 38 female) participated in the study for monetary compensation ($10 per hour in 
Experiment 1, and $15 per hour in Experiment 2). All participants reported normal or corrected-
to-normal vision and provided informed consent according to procedures approved by the 
University of Oregon Institutional Review Board (Experiment 1) and the University of Chicago 
Institutional Review Board (Experiment 2). 

 
Participant exclusions for Experiment 1. For Experiment 1 participants were excluded 

for poor performance on the task and excessive EEG artifacts. One participant did not return for 
the second day of the experiment. One participant was excluded for poor performance on the 
first day (86.1° average response error across all day 1 tests) and data collection was 
terminated for one participant during the session for excessive artifacts. In addition, 
participants were excluded from further analysis if they had insufficient artifact-free trials (<550 
trials). Artifact number exclusion criteria were set during data collection, but before the data 
were analyzed. Three participants were excluded due to excessive EEG artifacts. In the final 
sample, there were 27 participants in Experiment 1 (mean number of artifact-free trials = 799, 
SD = 85). 

 
Participant exclusions for Experiment 2. For Experiment 2, our target final sample size 

was 24 subjects. Participants were replaced for poor task performance or if too many trials 
were lost due to recording or ocular artifacts. One participant was excluded for poor 
performance on LTM trials (87.1° average response error across all retrieval tests), and data 
collection was terminated for three participants during the session for excessive artifacts. In 
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addition, participants were excluded from further analysis if they had insufficient artifact-free 
trials (<450 trials for encoding or retrieval). Artifact number exclusion criteria were set during 
data collection, but before the data were analyzed.  We relaxed the exclusion criterion in 
Experiment 2 because we obtained fewer trials per condition. Eight participants were excluded 
due to excessive EEG artifacts. In the final sample there were 24 participants in Experiment 2 
(mean number of artifact-free encoding trials = 535, SD = 46 and recall trials = 545, SD = 39). 

 

 
 

Apparatus. Stimuli were presented in MATLAB using Psychtoolbox (Brainard, 1997; Pelli, 
1997) and were presented on a 17-in. CRT monitor (60 Hz) for Experiment 1 and on a 24-in. LCD 
monitor (120 Hz) for Experiment 2.  
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Experiment 1 task procedure. The experiment was comprised of two sessions run on 
consecutive days (Figure 1a). On Day 1, participants were instructed to learn 120 object-
location associations (see Figure 1a for example clip art) as accurately as possible for the test 
the next day. On Day 2, participants were cued with the object and asked to recall and report 
the associated location while we recorded EEG data. 

 
 On Day 1, all 120 object-location pairings were studied over three repetitions with 

interleaved retrieval practice. Each of these repetitions were randomly divided into 12 “mini-
blocks”, in which 10 objects were presented followed by a final test on all objects in a random 
order. Specifically, 10 objects were serially presented in their respective spatial locations (1000 
ms per object, each object initiated by pressing spacebar). Next, each of the 10 objects were 
presented at fixation in a random order (1000 ms per object), and participants clicked that 
object’s location along a ring (unspeeded). Recall performance was assessed by calculating the 
response error (i.e., difference between the presented and reported location, ranging between 
–180° and 180°). After each response, participants were presented with the object in its correct 
location and the response error (500 ms). After completing these mini-blocks, participants again 
retrieved all 120 objects in a random order. One participant did not complete the final retrieval 
on the third run, and one participant accidentally aborted the experiment during the 
presentation of the first 10 objects before completing the rest of the session.  

 
On Day 2, participants repeatedly retrieved the location of all 120 objects while we 

recorded EEG activity (Figure 1a). During each repetition (7–8 in total), the objects were 
presented in a random order. Each retrieval trial was initiated by a space press. After a variable 
interval of 1100 to 1500ms, an object was presented at fixation along with the response ring. 
Participants were instructed to maintain fixation and to avoid blinking or moving the mouse 
from trial initiation until the cursor appeared. Participants were also instructed to recall the 
location during the retrieval delay (1250 ms).   

 
Experiment 2 task procedure. Experiment 2 was designed to examine encoding-

retrieval similarity within a single session. As such, the experiment was modified to take place 
within one day by reducing the total number of objects (80 vs. 120). Participants were 
instructed to learn object-location associations as accurately as possible and that they would 
alternate between studying and being tested on these associations (Figure 1c). 

 
During the study session, participants studied and then recalled each item during each 

trial. Each study trial was initiated by a space press. After a variable interval of 500 to 800 ms, 
an object was centrally presented (Figure 1c) along with a dot at the paired location (500 ms 
stimuli) followed by a blank delay (1250 ms).  To prevent participants from using a part of the 
object as a reference to remember the associated location, we randomly varied the orientation 
of each object (-45 to 45°) for each presentation. As in Experiment 1, participants then reported 
the to-be-remembered location by clicking on the response ring (unspeeded). Participants were 
instructed to click with the left mouse button if they were confident in their response, and to 
click with the right mouse button if they felt that they were guessing. Both confident and guess 
responses were used for subsequent analyses. After each response, participants were shown 
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the correct location of the item along with a number denoting the magnitude of the error. After 
studying all 80 objects, participants underwent another retrieval test for all objects in a random 
order (Figure 1c). The only difference between study and recall trials was the presence of the 
peripheral dot.  

 
Stimuli. In Experiment 1, 120 clip art objects (e.g., animals, plants, objects) were 

selected from the Sutterer and Awh (2016) clip art library. All objects were randomly assigned 
to unique angular locations (0–360°, 3° steps) for each participant. On Day 1, the viewing 
distance was ~80 cm (1.9° stimuli, 5° response ring, 0.3° fixation dot). On Day 2, the viewing 
distance was ~100cm (1.5° stimuli, 4° response ring, 0.25° fixation dot). The background of the 
screen was medium gray, all objects appeared in the color cyan, the response ring was dark 
grey, and the fixation dot was rendered in black.  

 
In Experiment 2, 80 of the objects from Experiment 1 were randomly paired with a 

unique location drawn from all 360° of possible locations. In order to assure that the entire 
space was used, assignment of locations was constrained such that an equal number of 
locations were drawn without replacement from eight bins each spanning 45 degrees of the 
possible space. The viewing distance was ~100 cm (1.2° stimuli, 4° response ring, 0.25° fixation 
dot). The background of the screen was again medium gray, all objects appeared in the color 
cyan, and the response ring and the fixation dot were dark grey. 

 
Modeling of Response Errors. Response error was measured as the number of degrees 

between the presented angular location and the reported angular location. Errors ranged from 
0⁰ (a perfect response) to ±180⁰ (a maximally imprecise response). For each run (Figure 1b), we 
calculated the average absolute response error for the artifact free trials. Error distributions of 
this sort have been shown to be well described by a mixture of a uniform distribution for 
guesses and a Von Mises distribution for correct responses (Zhang and Luck 2008; Brady et al. 
2013). We used MemToolbox (Suchow et al. 2013) to calculate the probability of retrieval 
(Pmem), precision (SD), and the bias (μ) of each participants responses.  

 
EEG acquisition. In Experiment 1, EEG was recorded with 20 tin electrodes mounted in 

an elastic cap (Electro-Cap International, Eaton, OH). We recorded from International 10/20 
sites F3, FZ, F4, T3, C3, CZ, C4, T4, P3, PZ, P4, T5, T6, O1, and O2, along with five nonstandard 
sites (OL, OR, PO3, PO4, POz). All sites were recorded with a left-mastoid reference, and were 
re-referenced offline to the algebraic average of the left and right mastoids. To detect 
horizontal eye movements, electrodes were placed ~1 cm from the canthi of each eye to record 
horizontal electrooculorgram (EOG). To detect blinks and vertical eye movements, a single 
electrode was placed under the center of the right eye and referenced to the left mastoid to 
record vertical EOG. The EEG and EOG data were amplified with an SA Instrumentation 
amplifier, filtered (0.01–80 Hz), and digitized (250 Hz) using LabVIEW 6.1 running on a PC.  

In Experiment 2, EEG was recorded from 30 active Ag/AgCl electrodes (Brain Products 
actiCHamp, Munich, Germany) mounted in an elastic cap positioned according to the 
International 10-20 system Fp1, Fp2, F7, F3, F4, F8, Fz, FC5, FC6, FC1, FC2, C3, C4, Cz, CP5, CP6, 
CP1, CP2, P7, P8, P3, P4, Pz, PO7, PO8, PO3, PO4, O1, O2, Oz. A ground electrode was placed in 
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the elastic cap at position FPz. Data were referenced online to the right mastoid and re-
referenced offline to the algebraic average of the left and right mastoids. Incoming data were 
filtered (0.01– 80 Hz) and recorded with a 500 Hz sampling rate using BrainVision Recorder 
running on a PC. To detect eye movements and blinks, we used eye tracking to monitor gaze 
position and electrooculogram (EOG) activity recorded with five electrodes (~1cm from the 
outer canthi of each eye, above/below the right eye, and a ground electrode placed on the left 
cheek).  

 
Artifact Rejection. Data from both experiments were visually inspected for EOG and EEG 

artifacts. Trials containing blinks, eye movements, blocking, and muscle artifacts were excluded 
from analysis. One electrode for one participant in Experiment 2 was also rejected during 
recording because it had malfunctioned. We also monitored gaze position during Experiment 2 
using a desk-mounted infrared eye tracking system (EyeLink 1000 Plus, SR Research, Ontario, 
Canada). Gaze position data for Experiment 2 were also visually inspected for ocular artifacts. 
For the analysis of gaze position, we further excluded trials in which the eye tracker was unable 
to detect the pupil, operationalized as any trial in which the horizontal gaze position was more 
than 15° from fixation or the vertical gaze position was more than 8.5° from fixation. We 
collected useable gaze position data (500 Hz sampling rate) for 18 of 24 participants.     

 
 Removal of trials with ocular artifacts was effective: maximum variation in grand-

averaged HEOG waveforms by remembered location bin was < 2.5 µV for Experiment 1 and < 2 
µV for both the encoding and retrieval in Experiment 2. Thus, eye movements in both 
experiments corresponded to variations in eye position of < 0.2° of visual angle (Lins et al. 
1993), roughly the size of the fixation dot. Analysis of the subset of participants (18) for whom 
we were able to obtain reliable gaze position data in Experiment 2 corroborates the HEOG data 
obtained from all participants. Variation in grand-average horizontal gaze position as a function 
of remembered location was < 0.11° for encoding and < 0.08° of visual angle for retrieval. 
Variation in grand-average vertical gaze position data by remembered location was  < 0.14° for 
encoding and < 0.09° of visual angle for retrieval.  For comparison, HEOG for these participants 
showed a < 2.1 µV maximum variation which also corresponds to < 0.2° of visual angle.  

  
Time-frequency analysis. To calculate frequency specific activity at each electrode we 

first band-pass filtered the raw EEG data using EEGLAB (eegfilt, see Delorme and Makeig, 2004). 
Alpha band analyses were band-pass filtered between 8 to 12 Hz, which is consistent with our 
prior work (Foster et al. 2016). For our exploratory analysis of the full range of frequencies, we 

band-pass filtered the data at 1 Hz intervals (4–50 Hz, down-sampled to 20 Hz, filter order: 
 

 3 ×
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝑙𝑜𝑤−𝑝𝑎𝑠𝑠 𝑐𝑢𝑡𝑜𝑓𝑓
) 

 
 We then applied a Hilbert transform (MATLAB Signal Processing Toolbox) and squared 

the complex magnitude of the complex analytic signal for each trial to calculate instantaneous 
power before averaging across trials.  
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Inverted encoding model. Following our prior work (Foster et al., 2016), we 
reconstructed spatially selective channel-tuning functions (CTFs) from the multivariate 
topographic distribution of oscillatory power across electrodes. We assumed that the power at 
each electrode reflects the weighted sum of eight spatially selective channels (which we 
assume reflect the responses of neuronal populations), each tuned for a different angular 
location (Brouwer and Heeger 2009; Sprague and Serences 2013; for review, Sprague et al. 
2015; Foster et al. 2016). We modeled the response profile of each spatial channel across 
angular locations as a half sinusoid raised to the seventh power:  

 
 R = sin(0.5θ)7, 
 

where θ is angular location (0–359°), and 𝑅 is the response of the spatial channel in arbitrary 
units. This response profile was circularly shifted for each channel such that the peak response 
of each spatial channel was centered over one of the eight location bins. These 8 location bins 
each spanned 45° and were centered on 22.5°, 67.5°, 112.5° etc for Experiment 1 and on 0°, 
45°, 90° etc for Experiment 2. Bin centers for each experiment were chosen prior to data 
collection. 
 

An IEM routine was applied to each time point in the alpha-band analyses and to each 
time-frequency point in the time-frequency analyses. We partitioned our data into independent 
sets of training data and test data (for details see the Assigning trials to training and test sets 
section). This routine proceeded in two stages (train and test). In the training stage, training 
data B1 were used to estimate weights that approximate the relative contribution of the eight 
spatial channels to the observed response measured at each electrode. Let B1 (m electrodes × 
n1 observations) be the power at each electrode for each measurement in the training set, C1 (k 
channels × n1 measurements) be the predicted response of each spatial channel (determined by 
the basis functions) for each measurement, and W (m electrodes × k channels) be a weight 
matrix that characterizes a linear mapping from “channel space” to “electrode space”.  The 
relationship between B1, C1, and W can be described by a general linear model of the form: 

 
B1 = WC1 

 
The weight matrix was obtained via least-squares estimation as follows: 

Ŵ = B1C1
T(C1C1

T)
−1

 

 
In the test stage we inverted the model to transform the observed test data B2 (m electrodes × 
n2 observations) into estimated channel responses, C2 (k channels × n2 measurements), using 

the estimated weight matrix, Ŵ, that we obtained in the training phase: 
 

C2̂ = (ŴTŴ)
−1

ŴTB2 

 
Each estimated channel response function was then circularly shifted to a common center (i.e., 
0° on the “Channel Offset” axis of Figure 2a) by aligning the estimated channel responses to the 
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channel tuned for the cued/target location to yield the CTF averaged across the eight 
remembered locations.  
 

Finally, because the exact contributions of each spatial channel to each electrode (i.e., 
the channel weights, W) varies across participants, we applied the IEM routine separately for 
each participant, and statistical analyses were performed on the reconstructed CTFs. This 
approach allowed us to disregard differences in the how location-selective activity is mapped to 
scalp-distributed patterns of power across participants, and instead focus on the profile of 
activity in the common stimulus or “information” space (Sprague et al. 2015; Foster et al. 2016; 
Foster, Sutterer, et al. 2017). 

 
Assignment of trials to training and test sets. Artifact free trials were partitioned 

equally into three independent sets to be used as training and test data for the IEM procedure 
(see Inverted Encoding Model). We down-sampled the data so that each set contained an equal 
number of trials, and that each location bin within a set also contained the same number of 
trials. For each of these sets we averaged power across trials for each location bin. We used a 
cross validation routine such that two sets of estimated power served as the training data and 
the remaining set served as the test data.  We applied the IEM routine using each of the three 
matrices as test data, and the remaining two matrices as training data. The resulting CTFs were 
averaged across each test set. 

 
For the analysis in which we ruled out the possibility that the IEM was detecting object-

specific information, we assigned all trials with the same object to the same partition. After 
completing this additional step, we equated trials across sets and bins in the same manner 
described above. 

 
  For analyses in which we examined how within participant changes in selectivity 

related to behavior, we first down-sampled to equate the number of trials assigned from each 
location across conditions. After completing this additional step, we equated trials across sets 
and bins in the same manner described above. Finally, we employed the same training 
procedure described above (2/3 of the total data), but split the final test set into our 
comparisons of interest. Thus, we used the same training data for both conditions and only the 
test data varied for each comparison. 

 
For analyses that assessed relationships between CTF selectivity and behavior across 

participants we down-sampled the number of trials assigned to each location bin for each of 
the three sets to be equal to the smallest number of trials assigned to each bin in each set for 
any participant. This down sampling approach precluded individual differences in CTF selectivity 
driven by the number of the trials included in the analysis for each participant.  

 
In Experiment 2, we sought to compare encoding and retrieval related activity. We 

closely followed the procedure that examined retrieval-related activity alone, by training on 2/3 
of the encoding data and testing on 1/3 of the retrieval data. By maintaining these same ratios 
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of training to test data, we could more directly compare the results from encoding and 
retrieval.  

 
Resampling random assignment. To avoid spurious results due to the random 

assignment of trials, we repeated each analysis multiple times with a different random 
assignment of trials. When comparing between conditions, we conducted 500 iterations per 
time point. When comparing against a permuted null distribution (which is a time consuming 
procedure), we conducted 10 iterations per time point, given the computational time needed 
for each analysis. In order to decrease computation time further for the 4–50 Hz time-
frequency analysis, we down sampled the data matrix of power values to 50 Hz (i.e., one 
sample every 20 ms). We down sampled after calculating power so that down sampling did not 
affect our calculation of power. The data matrix was not down-sampled for analyses restricted 
to the alpha band.  

 
Calculating CTF Selectivity. To quantify selectivity at each time point we calculated the 

slope of the CTF via linear regression. We collapsed across channels of equidistance (e.g., ±2 
bins). As such, higher slope values indicate greater CTF selectivity while lower values indicate 
less CTF selectivity. 

 
To test whether CTF selectivity was reliably above chance, we tested whether CTF slope 

was greater than zero using a one-sample t test. Because mean CTF slope may not be normally 
distributed under the null hypothesis, we employed a Monte Carlo randomization procedure to 
empirically approximate the null distribution of the t statistic. To generate our null distribution, 
we randomly shuffled the remembered location labels in each training/test set so that the 
labels were random with respect to the observed responses at each electrode. We then 
repeated 1000 iterations of this randomization procedure to obtain a null distribution of t 
statistics at each time point.  

 
Finally, to test whether CTF selectivity was reliably above chance we employed a 

nonparametric cluster approach that corrects for multiple comparisons by taking into account 
auto-correlation in time and frequency (Maris and Oostenveld 2007; Cohen 2014). Specifically, 
we applied a t-value threshold corresponding to p < .05 (Experiment 1: t = 1.706; Experiment 2: 
t = 1.714) to identify clusters of pixels (time and frequency analysis) or adjacent time points 
(alpha only analysis). At the same time, we applied the same threshold to each permutation 
and calculated the largest summed-t statistic for any cluster in the permutation, resulting in a 
distribution of maximal summed t-statistics for our permuted null distribution. Finally, the sizes 
of the significant clusters of the non-permuted data were thresholded such that only clusters 
larger than the 95th percentile of the permuted distribution were considered reliable (Type 1 
error less than .05). Therefore, our cluster test was a one-tailed test, corrected for multiple 
comparisons.  

 
Resampling test. When comparing between conditions (i.e., baseline alpha power, CTF 

slope), we used a non-parametric resampling procedure across participants (Efron and 
Tibshirani 1993). We resampled each participant with replacement 100,000 times. Then, we 
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calculated the number of these resampling iterations in which the differences were ≤ 0 (one-
tailed). In cases where no iterations were ≤ 0, we report the p values as p < .001. We deemed 
results to be reliably above chance if p < .05.  

 
Results 

 
Experiment 1 
 

Experiment 1 was designed to test whether continuous tests of memory accuracy, in 
conjunction with an IEM applied to EEG data, could be used to track memory retrieval. The 
design includes two important properties. First, we used a continuous test of memory accuracy 
by having participants report remembered locations along a ring. This provides a sensitive test 
of memory accuracy as the deviation from the correct location. Second, we recorded EEG 
activity during memory retrieval for the purposes of building and evaluating an encoding 
model. This inverted encoding model (IEM) can track memory retrieval as a graded function of 
spatial location.  

 
Behavioral performance. On Day 1, participants studied 120 object-location 

associations (Figure 1a). On Day 2, participants returned for a retrieval session in which we 
recorded EEG. Participants received feedback based on their response error (−180° to 180°). 
During both days, their performance improved (Figure 1b). During Day 1, average response 
error improved significantly from the first (M = 53.6°, SD = 17.7°) to the final test (M = 17.6°, SD 
= 11.1°) of the session (t(26)  = 13.2, p <.001, one-tailed). As a result on continued feedback, 
memory also improved from the first (M = 25.2°, SD = 14.1°) to the final test (M = 12.7°, SD = 
9.3°) during the second session (t(26)  = 7.3, p <.001, one-tailed).  

 
Alpha-band (8–12 Hz) topography tracks spatial representations retrieved from LTM. 

In Experiment 1, we tested whether oscillatory EEG activity tracks the time-resolved retrieval of 
precise spatial memories. Because we have previously found that alpha-band activity tracks 
spatial locations held in working memory (Foster et al. 2016), we were a priori interested in 
whether alpha-band power would also track locations retrieved from long-term memory. Thus, 
we used an IEM to test whether the multivariate topography of alpha-band power tracked 
locations retrieved from long-term memory. If the pattern of alpha-band power contains 
spatially selective information about the remembered location, we would expect to see a 
graded channel tuning function (CTF) with a peak response in the channel tuned for the 
remembered location (a channel offset of 0°in Figure 2) following the retrieval cue. This graded 
pattern can be quantified as slope across the position channels as distance from the retrieved 
location increases. A slope of zero reflects no spatial selectivity in the CTF, while a positive slope 
reflects spatial selectivity for the location associated with the cue. To test this hypothesis, we 
conducted a permutation test (see Materials and Methods) to determine at which time points 
we observed a CTF slope that was reliably above zero.  We detected reliable selectivity for 
spatial information (i.e., slopes > 0) that was sustained during the retrieval interval (588 – 
1250ms; Figure 2a). 
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One possibility is that this graded 

tuning is an artifact of our selection of a 
graded basis set (Saproo and Serences 
2014; Ester et al. 2015; Foster et al. 2016). 
To investigate this possibility, we reran this 
analysis using a delta function basis set that 
predicts a peak response in the preferred 
channel and no response in adjacent 
channels. If the topography of alpha power 
represents spatial locations in a graded 
manner, we would still expect a graded 
pattern of responses. Instead, if the 
observed results were driven by our 
selection of a basis set, we would expect a 
peak response in the correct bin and a little 
to no response in all other bins. Using a 
delta function basis set, we observed a 
graded pattern of responses across 
remembered locations (Figure 2b) that is 
similar to the pattern of activity we see 
when we apply the standard basis set 
(Figure 2c).  This suggests that our results 
are not an artifact of our selection of a 
basis set, but reflect a real graded tuning 
profile during the retrieval of spatial 
memories.  

 
Although the aggregate results 

revealed that channel activity peaked at the 
remembered location and dropped in a 
graded fashion as the distance form that 
location increased, this analysis did not 
establish that this orderly pattern was 
present at each location. Indeed, a courser 
hemi-field or quadrant-based signal could 
produce such a pattern. If alpha-band 
activity precisely tracks retrieved spatial 
locations, we should observe a graded 
pattern for each remembered location. We 
examined the average channel response 
during time points where we previously 
observed reliable spatial selectivity (588–
1250ms) for eight location bins separately. 
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The channel response for each location 
revealed graded information throughout 
the same window, and the channel 
response for all locations were reliable (All 
slopes > 0.05, all p’s < .002). Therefore, 
alpha-band CTFs track memory retrieval of 
a precise spatial location.  

 
Identifying frequencies that track 

the retrieval of spatial location.  A 
motivating question for the present work 
was whether spatially selective 
information was specific to alpha-band 
activity. On the one hand, prior work has 
found that alpha-band activity selectively 
tracks spatial locations that are covertly 
attended (Foster, Sutterer, et al. 2017) or 
held in working memory (Foster et al. 
2016). On the other hand, theta-band (4–7 
Hz) and beta-band (16–25 Hz) activity are 
known to play an important role in long-
term memory (Nyhus and Curran 2010; 
Morton et al. 2013).  Therefore, we 
performed the same IEM analysis at each 
frequency and time point from 4–50 Hz to 
test whether other frequency bands also 
carried spatially selective information 
about the remembered location. We 
conducted a permutation test at each 
frequency and time point and used a 
cluster correction to identify frequencies 
with CTFs that were reliably above zero 
(Figure 3a). Although we observed brief 
periods of spatial selectivity in the beta 
range (16–25 Hz) the most robust and sustained selectivity was in the alpha band (410ms – 
1250ms).    

 
Spatially selective alpha-band activity generalizes across visual objects associated with 

the same spatial location. For each participant, each object was associated with a unique 
location such that object and position were confounded within this analysis. Thus, it is possible 
that the selectivity we observed across some or all frequencies, reflects patterns of activity 
elicited by the cue rather than activity related to the retrieval of a spatial position. To 
investigate this, we re-ran the analysis while ensuring that distinct items were included in the 
training and test sets (see Materials and Methods). Despite this constraint, we observed similar 
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results (Figure 3b), confirming that the sustained spatial selectivity we observed reflected the 
position associated with each cue rather than the cue itself.  

 
Spatially selective alpha-band activity tracks the accuracy of recall from long-term 

memory. A consequence of providing feedback during Day 2 is that memory performance 
improved throughout the session.  To examine whether alpha-band CTFs tracked these 
behavioral improvements, we split the test data into the first half and second half of trials. 
Behaviorally, we observed that memory performance improved from the first half (M =20.3°, 
SD = 11.9°) to the second half (M = 13.9°, SD = 9.4°) of the session (t(26) = 7.2, p <.001, one-
tailed, Figure 4a).  Furthermore, a mixture model was used to assess whether these decreases 
in average response error were driven by changes in the probability of retrieval and/or 
mnemonic precision (see Materials and Methods). During Day 2, the probability of retrieval 
(Pmem) increased over time (first half: M = 86.3%, SD = 13.6%; second half: M = 93.6%, SD = 
9.5%; t(26)  = -6.3, p <.001, one-tailed) and mnemonic precision improved over time (first half: 
M = 13.6°, SD = 3.7°; second half: M = 12.3°, SD = 4.1°, t(26) = 5.52 p <.001, one-tailed).  If 
alpha-band CTFs are sensitive to the accuracy of memory retrieval, we would expect greater 
spatial selectivity in the second vs. first half of the session. To test this prediction, we used a 
resampling test (see Materials and Methods) in which we isolated the time points where 
aggregate data revealed significant alpha CTFs (Fig 2a; 588ms after cue onset until the 
response), and then compared average CTF slope across the first and second halves of the 
study. Indeed, spatial selectivity was significantly higher for the second half (CTF slope, M = 
0.085, SD = 0.061) relative to the first half (M = 0.06, SD = 0.055) of the experiment (Figure 4b) 
(p <.001, one-tailed resampling test). 
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 This reveals that alpha-band activity 
tracks the improvement in memory 
performance across learning episodes. 
Finally, CTF selectivity across the same 
window did not predict between-subject 
variations in the accuracy of recall (ρ(26) = -
.11,  p =.6). This null result could have 
numerous explanations but here we offer 
one hypothesis. While we instructed 
participants to immediately recall the 
location that corresponded to the object 
cue, it may be that some participants waited 
longer than others to call the correct 
location to mind while other participants 
relied on a more prospective strategy in 
which they immediately recalled the target 
location. This kind of strategic difference 
could yield large differences in mean CTF 
slope that may have been unrelated to 
whether the critical item could be retrieved. 
Indeed, the response time analysis in the 
next section lends further plausibility to this 
hypothesis.  

 
Spatially selective alpha-band 

activity tracks within- and between-subject 
variations in response latency. The latency 
of memory retrieval varied across trials and 
participants to a large extent (see Fig 5a). To 
examine whether alpha-band CTFs tracked 
these behavioral differences in response 
time (RT), we split the test data into two 
halves based on the median RT (average fast 
RT: M = 854ms, SD = 240ms; average slow 
RT: M = 1961ms, SD = 1055ms). If alpha-
band CTFs track the latency of memory 
retrieval, we would expect greater location 
selectivity on trials in which participants 
responded more quickly. Indeed, location 
selectivity was significantly greater when 
participants responded more quickly (M = 
0.085, SD = 0.054) than when they 
responded slowly (M = 0.052, SD = 0.060; p 
< .001, one-tailed resampling test; Figure 
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5b).  This pattern supports the hypothesis that participants responded more quickly when they 
had already retrieved the spatial information prior to the onset of the response cue, yielding a 
higher level of CTF selectivity during trials with faster responses.  
 

Across participants, we observed substantial variation in median RTs (range = 504 – 
2025 ms). To examine whether alpha-band CTFs tracked these individual differences in 
behavior, we tested whether there was a correlation between median RT and the selectivity of 
alpha-band CTFs (measured as slope). We predicted that participants who responded more 
quickly (i.e., faster RTs) would also have greater spatial selectivity (i.e., higher CTF slope). We 
observed a trending negative relationship between RT and CTF slope, as predicted (r = −.36; p = 
.07; Figure 5c). In addition to reflecting differences in the immediate accessibility of spatial 
memories, this relationship could also be driven by individual differences in the extent to which 
participants engaged in prospective retrieval during the delay interval.  This is our working 
hypothesis, given that the differences in response latency seemed too large to reflect 
differences in the immediate accessibility of the spatial memories alone. 

 
Experiment 2 
 

In Experiment 2, we replicated and extended Experiment 1 in two important ways. First, 
to further examine the relationship between alpha-band selectivity and memory performance, 
we recorded EEG data throughout the learning process, including the first retrieval attempts. 
Second, we recorded EEG during both encoding and retrieval, which allowed us to test the 
extent that retrieval-related oscillatory activity resembled encoding-related oscillatory activity. 

 
Behavioral performance. During a single session, participants learned 80 object-location 

associations (Figure 1c) with interleaved study and retrieval. During study trials, participants 
actively maintained the associated spatial location over a 1250 ms delay interval. During 
retrieval trials, participants had to retrieve the associated spatial location from long-term 
memory. During study trials, memory performance was very accurate and improved modestly 
but reliably from the first half (M = 4.7°, SD = 1°) to the second half (M = 4.4°, SD = .9°) of the 
session (t(23) = 2.42,  p = .012, one-tailed; Figure 1d). Mixture modelling revealed that this 
change was due to an improvement in mnemonic precision (first half: M = 5.8°, SD = 1.2°; 
second half: M = 5.4°, SD = 1.1°; t(23) = 2.28,  p = .016, one-tailed) while no change was 
observed for probability of retrieval (first half: M = 99.9%, SD = .29%; second half: M = 99.9%, 
SD = .16%; t(23) = -.81,  p = .21, one-tailed), which was at ceiling. For the LTM retrieval trials, we 
observed a substantial improvement in memory performance across the session as learning 
progressed. Memory error decreased from the first half (M = 40.8°, SD = 14.0°) to the second 
half (M = 16.2°, SD =11.9°; t(23) = 17.0,  p < .001, one-tailed; Figure 6a). We replicated our 
finding in Experiment 1 that the reduction in memory error was driven by both an increase in 
the probability of retrieval (first half: M = 61.1%, SD = 16.0%; second half: M = 89.9%, SD = 
13.7%; t(23) = -15.4,  p < .001, one-tailed) and an improvement in mnemonic precision (first 
half: M =13.8°, SD = 4.35°; second half: M = 11.3°, SD =2.76°; p <.001, one-tailed). Thus, long-
term memory improved throughout the session as participants learned the object-location 
associations.  
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One goal for Experiment 2 was to create a larger range of performance throughout the 

session in which EEG data was recorded. In line with this goal, we observed a much larger range 
in mean response error in Experiment 2 (71.0° Run 1 – 15.2° Run 9; Figure 1d) than in Day 2 of 
Experiment 1 (25.2° Run 1 – 12.3° Run 8), giving us the opportunity to apply the IEMs approach 
across the full trajectory of learning.  

 
Spatially selective alpha-band activity tracks the accuracy of recall from long-term 

memory. In Experiment 1, alpha-band CTFs tracked retrieval of spatial locations from long-term 
memory. Furthermore, spatial selectivity of alpha-band CTFs increased as memory accuracy 
improved (Figure 4). Experiment 2 was designed to replicate and extend those results over a 
larger range of behavior. We predicted that alpha-band CTFs would demonstrate higher 
selectivity when memories were more accurate. In line with this prediction, the average 
selectivity (i.e., CTF slopes) was larger in the second half of the session (M = 0.048, SD = 0.032) 
than in the first half (M = 0.012, SD = 0.022; p < .001; one-tailed; Figure 6b). Note, for this and 
all subsequent average CTF analyses, we averaged from 588 ms (the starting time point used in 
Experiment 1) until the onset of the response cue. Control analyses revealed that increases in 
alpha-selectivity across the session could not be attributed to increases in alpha power across 
the recoding session (Figure S1). As in Experiment 1, CTF slope did not track memory 
performance between participants (ρ(23) = -.14, p = .52). Thus, the spatial selectivity of alpha 
activity tracked broad improvements in recall accuracy across the session.  

 

 
 
 
 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/207860doi: bioRxiv preprint first posted online Feb. 18, 2018; 

http://dx.doi.org/10.1101/207860


19 
 

Spatially selective alpha-band 
activity tracks response latency. As in 
Experiment 1, we found that the 
selectivity of alpha-band CTFs tracked 
within- and between-subject variations in 
RT (Figure 7). A median split on RT 
revealed greater spatial selectivity for 
trials with fast RTs (CTF slope: M = 0.035, 
SD = 0.03) than trials with slow RTs (M = 
0.021, SD = 0.018), p = .005, one-tailed; 
Figure 7b). We also replicated our finding 
that participants with faster RTs showed 
greater spatial selectivity of alpha-band 
CTFs (r = −.49; p = .02; Figure 7c). This link 
between CTF slope and RTs may reflect 
strategic differences between participants 
who prospectively recalled the associated 
location quickly following cue onset and 
those that waited until closer to the 
response window to bring that 
information to mind.  

 
Comparing frequency specificity at 

encoding and retrieval. In Experiment 1, 
we found that oscillatory activity in the 
alpha band (8–12 Hz) tracked retrieved 
locations following a memory cue. In 
Experiment 2, we replicated this finding, 
with cluster corrected permutation tests 
showing that primarily oscillations 
between 8 and 12 Hz, and to a lesser 
extent oscillations between 12 and 18 Hz, 
tracked the retrieved location (~500–
1250ms; Figure 8a). Note, that in order to 
obtain the most robust measurement of 
spatially sensitive frequencies at retrieval, 
we only tested our IEM on trials from the 
second half of the experiment when 
memory performance and spatial 
selectivity were highest (Figure 6a). For 
consistency we applied the same 
approach to study trials (Figure 6b).  
Applying the IEM to study trials revealed 
that spatially selective information was 
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represented across a wider range of low 
frequencies (Figure 8b; 4–8 Hz; 0–500ms; 
25–30 Hz, 500–600ms; 8–20 Hz, ~200–
1750ms). Although we observed the most 
sustained spatial selectivity in the alpha 
band (8–12 Hz). These results replicate past 
work that has shown that alpha-band activity 
tracks locations held in working memory 
(Foster et al. 2016). Finally, an overlay plot of 
frequency bands carrying spatially specific 
information in both the encoding and 
retrieval tasks (Figure 8c), revealed 
considerable overlap in the 8–12 Hz band 
across conditions. Together these findings 
suggest that the range of frequencies 
carrying spatially specific information during 
encoding is similar to the range of spatially 
specific frequencies in a WM task as well as 
during LTM retrieval.  
 

Patterns of alpha-band activity 
generalize across encoding and retrieval. 
While the same frequency band carried 
spatially spatial information during both 
study and retrieval, this does not necessarily 
mean that the multivariate patterns of 
activity corresponding to each location are 
also similar during encoding and retrieval. To 
provide a comprehensive test of encoding-
retrieval similarity, we trained the IEM using 
study trials and tested the model on retrieval 
trials. We observed robust spatial selectivity 
throughout the retrieval interval (520–
1750ms; p < .05; Figure 9). This provides 
evidence that the multivariate pattern of 
alpha activity during retrieval is well-
described as a re-instantiation of the pattern 
of alpha-band activity seen during encoding.  
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Discussion 

 
The present work represents a new 

approach for tracking and understanding 
the neural mechanisms underlying 
retrieval of precise feature memories. Over 
two experiments, we employed a 
combination of a continuous report task, in 
which participants learned to associate 
individual objects with specific spatial 
locations, with the application of an 
inverted encoding model to ongoing EEG 
activity. We demonstrated that IEMs and 
rhythmic brain activity can be used track 
and reconstruct the reinstatement of 
spatially selective information from long-
term memory. 

 
We modeled long-term memory 

retrieval performance using a mixture modeling approach. This approach is commonplace in 
the field of visual working memory (Wilken and Ma 2004; Zhang and Luck 2008) but has only 
recently begun gaining traction in the field of long-term memory (Brady et al. 2013). This 
approach is able to disentangle improvements in mnemonic precision and the probability that 
memories are retrieved (Fan and Turk-Browne 2013; Harlow and Yonelinas 2014; Sutterer and 
Awh 2016). Initial studies have found that these parameters are reflected by distinct neural 
signals (Murray et al. 2015; Richter et al. 2016), providing further evidence that separately 
modeling mnemonic precision and probability of retrieval is a meaningful distinction. Our 
results demonstrate that both the probability of retrieving long-term memories and the 
precision with which those memories are retrieved continue to improve with feedback over 
many repetitions. We propose that this more sensitive approach of assessing memory accuracy 
will continue be a successful direction for the field of long-term memory.  

 
A recent model put forth by Watrous and colleagues (2014), the spectro-contextual 

encoding and retrieval theory (SCERT), asserts that both the frequencies supporting cognitive 
operations at encoding and retrieval and the specific patterns of activity within those 
frequencies should overlap. In line with this prediction, we observed considerable overlap in 
the frequencies carrying spatial memory representations between encoding and retrieval. 
Furthermore, we found that the multivariate patterns of alpha-band activity reinstated during 
retrieval are strikingly similar to those patterns observed during the initial encoding of 
locations. These observations provide new evidence that encoding-retrieval oscillatory 
similarity extends to the representation of precise feature representations at the population 
level, supporting the idea that oscillatory brain activity plays a critical role in memory formation 
and reinstatement. However, it is worth noting that a broader range of frequencies tracked to-
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be-remembered locations at encoding than at retrieval, suggesting that not all spatially 
sensitive frequencies engaged during stimulus presentation are later reinstated.  

 
Indeed, a novel aspect of our work was the ability to search for frequencies that code 

for precise spatial memories. We demonstrated robust and sustained spatial selectivity during 
long-term memory retrieval, primarily in the alpha band (8–12 Hz). These results are similar to 
what has been observed in the field of visual working memory. However this stands in contrast 
with other findings that suggest the role of theta and beta activity in long-term memory. In 
particular, past studies have found that theta activity (4–7 Hz) plays a key role in episodic 
memory (Nyhus and Curran 2010; Hsieh and Ranganath 2014) and in the hippocampus during 
spatial navigation (Watrous et al. 2011; Bohbot et al. 2017). However, it is consistent with some 
work that suggests a role for alpha in memory and memory guided attention (Stokes et al. 
2012; Waldhauser et al. 2012, 2016). It is possible that our scalp EEG signal was relatively 
insensitive to theta signals prominent in the hippocampus (Hsieh and Ranganath 2014). Future 
work from modalities that more directly index hippocampal activity (i.e., MEG/ECOG) might 
provide some insight into the role of theta in precise spatial memory reinstatement.   

 
Another promising application of the approach employed here is the ability to compare 

the time course with which fine-grained and courser memory representations emerge. For 
example, spatially selective alpha activity emerged considerably later than some prior 
observations of hemifield-selective activity. While hemifield selective activity has been 
observed within 200 ms of the onset of a retrieval cue (Waldhauser et al. 2016), our time by 
frequency analysis revealed no evidence of activity related to the specific retrieved location, in 
any frequency band, until at least 410 ms after the retrieval cue. One possible explanation for 
this latency difference is that hemisphere reactivation and retrieval of fine-grained spatial 
representations rely on different processes. For instance, Gratton et al. (1997), suggest that the 
hemisphere bias they observe may be more structural, resulting from the formation of a 
stronger trace in the hemisphere contralateral to the hemifield in which the stimulus was 
presented; while in the present study, the relatively slower onset of alpha CTFs implies a more 
effortful retrieval of precise spatial information. Another potential explanation is that context 
reinstatement during an object recognition task could occur more rapidly than object-cued 
retrieval of spatially selective information. Further work is needed to explore this difference in 
latency between hemifield effects and the reactivation of the fine-grained alpha topography 
that tracks specific locations. 

 
Prominent models have argued that spatial-temporal context is the backbone of 

episodic memory (O’Keefe and Nadel 1978; Ekstrom and Ranganath 2017) serving as an index 
for the retrieval of specific past experiences. Thus, a method that allows temporally-resolved 
tracking of spatial retrieval from LTM may provide a powerful tool for understanding human 
memory. Here, we present such a method, and show that it tracks both the accuracy and 
latency of memory-guided behavior. Moreover, we provide new evidence confirming a clear 
prediction of reinstatement models of LTM retrieval. The format of oscillatory activity during 
encoding into LTM is recapitulated during the subsequent retrieval of those memories.  
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