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SUMMARY

Working memory (WM) is a core component of intellectual ability. Traditional behavioral accounts have 

argued that there remain distinct memory systems based on the type and sensory modality of information 

being stored. However, more recent work has provided evidence for a class of neural activity that indexes 

the number of visual items stored in a content-independent fashion. Here, across 2 electroencephalogram 

(EEG) experiments, we demonstrate an item-based signature of WM storage that generalizes across visual 

and auditory sensory modalities. Using multivariate techniques, we observed parallel but separate neural 

patterns that independently track stimulus modality, the number of items stored in WM (regardless of modal

ity), and the number of spatially attended positions. We propose that these load signals reflect a modality- 

independent process for binding item representations to context, reinforcing accounts arguing for a distinc

tion between the maintenance of the content of one’s thoughts and the manipulation and gating of those 

thoughts.

INTRODUCTION

Neural studies of working memory (WM) have made major prog

ress by examining stimulus-specific activity that tracks the con

tent of stored items.1–5 These neural signals track the voluntarily 

stored aspects of relevant items,5,6 predict mnemonic fidelity,7–9

and provide insight into the dynamics of selection and access to 

stored content.10–12 Nevertheless, recent work has highlighted 

evidence for a distinct class of neural activity that indexes the 

number of items encoded into WM, independent of the specific 

content associated with those items.13–18 For instance, multivar

iate analyses of electroencephalogram (EEG) activity reveal a 

common signature of the number of items stored in WM, despite 

variations in both the type (e.g., color, orientation, and motion) 

and the number of feature values stored for each item.16,17 More

over, when perceptual grouping encourages multiple elements 

to be perceived as a unit, this neural load signal tracks the num

ber of perceived items, not the number of attended elements or 

positions.16,19 Thus, these findings reveal an item-based neural 

signature of WM storage that generalizes across highly distinct 

visual features.

Our working hypothesis is that these content-independent sig

natures of WM load are generated by a spatiotemporal ‘‘pointer’’ 

operation that binds item representations to the surrounding 

event context.20 This kind of contextual binding has been high

lighted both in major models of WM21–25 as well as in longstand

ing theories of dynamic visual cognition.26,27 Moreover, the latter 

theories embrace a clear separation between the indexing oper

ation supported by pointers, on the one hand, and parallel oper

ations that maintain the featural content of the selected items, on 

the other. Here, there is a useful analogy between pointers and 

demonstrative words such as ‘‘this’’ and ‘‘that’’: demonstratives 

hold no meaning by themselves, but their function is to refer to 

other meaningful words. Likewise, pointers may support the 

contextual binding of items, while parallel operations maintain 

the contents of the indexed representations. Thus, pointers pro

vide an attractive explanation for the presence of content-inde

pendent signatures of WM storage.

Extant demonstrations of content-independent load signals, 

however, have been restricted to the visual modality, leaving 

open the possibility that distinct sensory modalities recruit 

distinct pointer systems. Indeed, prominent WM models have 

argued that there are independent resource pools for the storage 

of visual and auditory/phonological information,28–30 and multi

ple studies have found minimal interference between auditory 

and visual loads competing for WM storage.31,32 Moreover, 

past EEG studies have highlighted distinct electrode sites where 

activity tracks auditory and visual WM loads, with anterior elec

trode sites tracking auditory loads33 while posterior parietal elec

trodes track the number of visual items stored.13,34 Thus, both 

behavioral and neural studies have pointed toward dissociable 

WM systems for visual and auditory information. In the present 

work, we replicate the observation that ongoing EEG activity is 

shaped by the sensory modality that is stored, but we also pre

sent clear evidence for a modality-general component of WM 

storage.

Pilot work revealed that we could decode the number of 

discrete sounds being held in WM by applying multivariate clas

sifiers to ongoing EEG activity, similar to recent work with visual 

stimuli.16–18,35 Here, we manipulated the number and sensory 
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modality of items stored in WM, using audiovisual displays that 

controlled sensory energy across experimental conditions. 

Experiment 1 revealed robust generalization of EEG load signa

tures across auditory and visual features, such that training on 

one sensory modality enabled precise decoding of load in the 

other sensory modality. Moreover, the load signature for sin

gle-feature objects (colors or sounds alone) generalized to 

dual-feature audiovisual objects, showing that this analysis pro

vides an item-based rather than a feature-based measure of WM 

storage. Representational similarity analysis provided clear evi

dence for a sustained neural signal that tracked the number of 

items stored in WM, regardless of the sensory modality or infor

mational complexity of those memories. Critically, this signal ex

plained distinct variance in ongoing EEG activity from another 

robust signal that tracked the stored sensory modality. Experi

ment 2 replicated these key findings while independently manip

ulating the number of attended positions and the number of 

items stored in those positions. We saw clear evidence for a neu

ral signal tracking the number of attended positions, but this ex

plained distinct variance in EEG activity from the modality-gen

eral signal that tracked the number of stored items. Thus, our 

findings reinforce recent work arguing for a functional dissocia

tion between the voluntary control of spatial attention and the en

coding of items into WM,18,36 and they provide direct neural ev

idence for a modality-general component of this online memory 

system.

RESULTS

28 healthy human participants performed a WM task in which 

both the number of items to be stored and the sensory modality 

of the stored information were manipulated (Figure 1). Our task 

employed sequentially presented audiovisual stimuli that con

sisted of a colored diamond and a real-world sound that onset 

simultaneously in one of three positions (left, middle, or right). 

To match sensory energy across set sizes, all sample displays 

included two audiovisual presentations. For the set size 2 trials, 

all audiovisual stimuli were comprised of a saturated color and a 

real-world sound. For set size 1 trials, 1 of those audiovisual 

stimuli was randomly selected and replaced with energy- 

matched ‘‘placeholders.’’ Participants were instructed to store 

the targets and ignore the placeholders in preparation for a 

change detection probe. Critically, in different blocks, partici

pants were instructed to store either the color, the sound, or 

the conjunction of color and sound for each audiovisual target. 

Following a 1,000 ms delay period, a single probe stimulus 

was presented, and subjects reported whether it was the same 

or different from the stimulus presented at that location. Test 

probes were in the modality that matched the storage instruc

tions. When both visual and auditory features were stored, visual 

and auditory probes were randomly intermixed and equally 

likely.

We had behavioral data for 22 out of 24 subjects (behavioral 

data for subjects 1 and 2 were missing due to a programming er

ror). Mean accuracy across subjects was high for all conditions 

(range 92.3% for auditory set size 2%–97.7% for visual set 

size 1). A repeated-measures ANOVA revealed a significant ef

fect of attended modality (F(2,42) = 8.95, p = 5.8 × 10− 4), WM 

load (F(1,21) = 18.43, p = 3.2 × 10− 4), and a non-significant inter

action term (F(2,42) = 2.52, p = 0.092).

Neural signatures of WM load generalize across sensory 

modalities

Consistent with past work, multivariate analysis of EEG activity 

enabled robust and sustained decoding of the number of items 

stored in WM for all 3 conditions (visual, auditory, and conjunc

tion). To test whether load decoding generalized across these 

conditions, we measured classifier performance when training 

and testing across different modalities (Figures 2A and 2B). 

Thus, we trained classifiers to discriminate between set sizes 1 

and 2 within each modality, and we tested those classifiers on in

dependent data in which either the same or a different modality 

was stored. Instead of using raw classification accuracy to mea

sure decodability, we employed a metric called ‘‘hyperplane 

contrast.’’17 Hyperplane contrast is conceptually similar to de

coding accuracy, with higher numbers indicating better decod

ing. Hyperplane contrast has the advantage of being more 

robust to non-orthogonal but potentially confounding neural sig

nals. Moreover, this signal grows proportionally to the signal-to- 

noise ratio, improving interpretability (see STAR Methods for 

additional rationale).

Overall, we observed robust decoding of WM load for nearly all 

time points within modalities (51/58 auditory, 52/58 visual) and 

for most, but not all, time points across modalities (45/58 audi

tory to visual, 40/58 visual to auditory). When averaging over 

the delay period, hyperplane contrast (a measure of classifier 

performance) over the delay period was significantly greater 

than zero both when training and testing within a modality (audi

tory, t(23) = 3.91, p = 3.48 × 10− 4, Bayes factor [BF] = 96.4; vi

sual, t(23) = 3.74, p = 5.33 × 10− 4, BF = 66.4) and when training 

and testing across modalities (auditory to visual, t(23) = 3.18, 

p = 2.10 × 10− 3, BF = 20.2; visual to auditory, t(23) = 3.01, 

p = 3.16 × 10− 3, BF = 14.288). Hyperplane contrast when testing 

across modalities (crossmodal) was not significantly lower than 

within modalities (intramodal) at any time point (one-tailed t 

test, false discovery rate [FDR] corrected). In the aggregate, 

BFs for the difference between intramodal and crossmodal 

contrast were 0.77 (train auditory, t(23) = 1.143, p = 0.132) and 

1.0 (train visual, t(23) = 1.388, p = 0.089), indicating ambiguous 

evidence for either the null or alternative hypotheses. While the 

ambiguous bayes factor does not permit us to rule out some 

domain-specificity (in fact, we show later that attended modality 

substantially impacts the load signal), the presence of robust 

200 ms 100 ms 200 ms 1000 ms probe
Attend: only colors, only sounds, or both

1 item

2 items

Figure 1. Experiment 1 task 

Participants attended to colors, sounds, or both features. Stimuli were color- 

sound pairs. In set size 1 trials, one pair was replaced with white noise and a 

gray diamond.
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cross-decoding across modalities provides strong evidence for 

a common neural signature of load across visual and auditory 

modalities.

Neural signatures of WM load are item-based, not 

feature-based

To test whether these load classifiers were operating at the level 

of items or features, we examined whether load classifiers based 

on single-feature stimuli generalized to conjunction conditions in 

which both visual and auditory features were retained. Cross-de

coding between single-feature and conjunction conditions was 

robust and nearly identical (Figures 2C and 2D), consistent 

with prior findings with conjunctions of color and orientation.16

Hyperplane contrasts for conjunction and single-feature trials 

were not significantly different at any point (two-tailed t test, 

FDR corrected; delay average, train single-feature: t(23) = 

− 0.029, p = 0.976, BF = 0.215; train conjunction: t(23) = 1.049, 

p = 0.305, BF = 0.351). While successful cross-decoding pro

vides evidence for a common load signature, we also used a 

more specific analysis to distinguish whether load decoding 

was item-based or feature based. We trained a model to distin

guish between set sizes 1 and 2 using only single-feature stimuli 

and then tested this model with a single conjunction stimulus. If 

load decoding is based on the number of feature values stored, 

then models trained on single-feature stimuli should be biased 

toward higher load classification when the number of features 

stored per item is doubled. This prediction was not supported. 

Even though twice as many features were stored in the conjunc

tion condition, a single conjunction stimulus did not show an up

ward shift from the single-feature set size 1 condition in a hyper

plane analysis (Figure 2E), with the exception of a single time 

point. No significant increase in load was observed in the aggre

gate (set size 1: t(23) = 1.391, p = 0.089, BF = 1.007; set size 2: t 

(23) = 0.949, p = 0.176, BF = 0.644). The same pattern when 

training the model on conjunction stimuli (Figure 2F, set size 1: 

t(23) = − 0.407, p = 0.656, BF = 0.463; set size 2: t(23) = 1.309, 

p = 0.102, BF = 0.916). Thus, this modality-general load signal 

tracks the number of items stored in WM, not the number of 

feature values.

Generalization across modalities is not due to storage of 

irrelevant features

An alternative explanation for the generalization of load models 

across the auditory and visual conditions is that observers 

tended to store both auditory and visual features, regardless of 

instructions. In this case, perfect cross training would be ex

pected even if independent neural signals tracked each modal

ity. Two pieces of evidence contradict this hypothesis. First, 
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Figure 2. Decoding results for experiment 1 (n = 24) 

Stimuli were presented from 0 to 200 ms and 300 to 500 ms (shown in gray). Bar graphs are the average value (hyperplane contrast for A–D, hyperplane score for 

E and F) over the delay period (500–1,500 ms). Lines denote mean value, and the shaded region = SEM. Squares indicate hyperplane contrast values (A)–(D) 

greater than zero (FDR-corrected one-tailed t test). BFs for each delay period comparison (A and B: HA = intramodal > crossmodal; C and D: HA = single feature ∕=

conjunction; E and F: conjunction > single feature) are also given. 

(A and B) Hyperplane contrast within and across sensory modalities. Blue: same modality as training; orange: opposite modality. 

(C and D) Hyperplane contrast for single-feature vs. conjunction (dual-feature) trials. Blue: same number of features as training, orange: different number of 

features. 

(E and F) Hyperplane distances for single-feature vs. conjunction trials. More negative values are higher confidence set size 1, and more positive values are higher 

confidence set size 2. Yellow squares indicate 2 conjunctions > 1 conjunction. Red indicates 2 singles > 1 single. Green indicates 1 conjunction > 1 single (only 

present at one time point). 

See also Figure S4 for an analysis of the effects of trial bin size on generalization.
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attended modality (auditory/visual) was robustly discriminated 

by our classifier (Figure 3A) to an even greater degree than 

load, and this feature-specific activity was sustained across 

the delay period. This provides direct neural evidence that ob

servers selectively stored the relevant features. Second, we 

reasoned that if cross training was driven by storage of the irrel

evant feature in WM, then individuals with higher decodability of 

the attended feature should show worse generalization between 

auditory and visual load models. We evaluated this in two ways. 

First, we correlated attended feature discriminability with cross

modal decoding performance (Figures 3B and 3D) to test the 

prediction that subjects worse at filtering would show better 

generalization across modalities. Second, we replaced cross

modal discriminability with a ‘‘penalty’’ metric (Figures 3C and 

3E), equal to the difference between the mean intramodal and 

crossmodal contrast. This hypothesis predicts that poor filterers 

(low attended feature discriminability) should have a smaller pen

alty because they were in more similar attentional states during 

the auditory and visual conditions. However, three of these cor

relations were not significant (Figure 3B p = 0.912, BF = 0.255; 

Figure 3C p = 0.562, BF = 0.297; Figure 3D p = 0.954, BF = 

0.254), while one was statistically significant in the opposite di

rection of the prediction (Figure 3E, p = 0.016, BF = 3.93). How

ever, after excluding outlier values, this association was no 

longer significant (p = 0.595, BF = 0.302). Thus, storage of irrel

evant features cannot explain our results.

Using Representational similarity analysis for a 

concurrent analysis of modality-general pointers and 

feature-specific activity

One limitation of our decoding approach so far is that each anal

ysis targeted one construct of interest (i.e., modality-general 

load vs. feature-specific activity) while ignoring the presence of 

the others. Moreover, even good classifier generalization does 

not conclusively establish overlap in neural codes.37 Thus, to 

obtain converging evidence regarding these distinct classes of 

neural activity, we used representational similarity analysis 

(RSA) to simultaneously model the effects of load and stimulus 

modality. The logic of RSA is to examine whether specific theo

retical models predict the pairwise similarity across all conditions 

of the experiment. We tested four separate regressors that might 

predict this similarity structure (Figure 4C): (1) pointer load 

model—predicts similarity based on the number of items stored, 

regardless of the selected sensory modality. (2) Feature load 

model—predicts similarity based on the total number of feature 

values stored (regardless of modality). (3) Graded feature 

model—predicts similarity based on the degree of overlap in at

tended features, such that the conjunction condition falls in be

tween the single-feature conditions. (4) Task-set model—pre

dicts similarity based on which task set the observer has 

adopted (color, sound, or conjunction), with each task set being 

equally distinct from the others. Thus, regressors 1 and 2 con

trasted item-based vs. feature-based models of WM load activ

ity, while regressors 3 and 4 examined whether feature-selective 

signals tracked the specific constellation of features stored or 

the discrete task sets that corresponded to each experimental 

condition.

Item-based pointers and feature-specific activity 

explain unique variance in EEG activity

By calculating the semipartial correlations between each regressor 

and ongoing EEG activity, we measured the unique variance ex

plained by each regressor at each time point (Figures 4D and 

4E). Two regressors reliably explained variance in neural activity. 

First, the pointer load model explained robust variance throughout 

the entire delay period (Wilcoxon signed-rank test, W = 273, 

p = 7.48 × 10− 5), while the feature load model explained no unique 

variance (W = 183, p = 0.180). This reinforces the prior conclusion 
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Figure 3. Leakage does not explain generalization (n = 24) 

(A) Hyperplane contrast between attend auditory and attend visual trials (set sizes combined). Significant time points (FDR corrected p < 0.05) are denoted by blue 

squares. 

(B and D) Correlation between attended feature discriminability and cross-decoding (B: auditory to visual, D: visual to auditory). 

(C and E) Correlation between attended feature discriminability and crosstraining penalty equivalent to within modality—cross modality hyperplane contrast, 

(C) auditory—auditory to visual, (E) visual—visual to auditory. All values are averaged across the delay period. Correlations were evaluated by linear regression 

(Wald test) across subjects (line = line of best fit, shaded region = 95% CI).
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that these neural load signals are item-based, not feature based. 

Second, the graded feature model explained robust variance 

throughout the delay period (W = 278, p = 3.19 × 10− 5), while 

the task-set model failed to explain unique variance (W = 92, p = 

0.952). Thus, feature-selective activity in this study was better ex

plained by activity within modality-specific sensory regions than by 

activity that tracked the three discrete task sets required by our in

structions.38 Critically, the pointer load and graded feature models 

explained distinct variance in EEG activity. Thus, RSA reinforced 

our initial evidence for modality-general pointers while simulta

neously controlling for feature-specific neural activity. Finally, 

multidimensional scaling (MDS) allowed us to visualize the similar

ity relationships between all experimental conditions within a 2D 

space (Figure 4B). Here, two axes of separation are apparent. First, 

a ‘‘sensory modality’’ axis divides the conditions from left to right. 

Visual and auditory conditions are on the left and right, respec

tively, while the conjunction condition falls in between them, in 

line with the graded feature model. Second, another axis separates 

load 1 conditions (top) from load 2 conditions (bottom), regardless 

of modality. Thus, this separability aligns with our hypothesis and 

the semipartial correlations described above.

Experiment 2

Although the findings so far reveal a clear dissociation between 

load-sensitive neural signals and feature-specific neural activity, 

the number of items stored in WM was confounded with the 

number of relevant positions in the display. Could changes in 

the breadth of spatial attention explain the common load signa

ture between visual and auditory modalities? Indeed, recent 

work has shown that RSA is sensitive to EEG signatures of 

spatial attention,18 enabling a direct test of this question. Thus, 

we independently manipulated WM load, attended modality, 

and the number of spatially attended positions (Figure 5). Sub

jects attended to either auditory or visual features and stored 

one or three targets that were sequentially presented in either 

a single location or across three unique locations.

We had behavioral data for 15 out of 16 subjects. Mean accu

racy across subjects ranged from a minimum of 89.3% (auditory 

set size 3, different locations) to a maximum of 98.4% (visual set 

size 1, same locations). A repeated-measures ANOVA revealed a 

non-significant effect of attended modality (F(1,14) = 2.85, p = 

0.11), a significant effect of WM load (F(1,14) = 35.0, p = 

3.8 × 10− 5), and a (although very close to threshold) significant 

effect of the number of attended locations (F(1,14) = 4.68, p = 

0.048). There was a non-significant interaction between modality 

and load (F(1,14) = 0.83, p = 0.38), but significant interactions be

tween modality and number of locations (F(1,14) = 19.07, p = 

6.44 × 10− 4), load and number of locations (F(1,14) = 6.03, p = 

0.028), and three-way interaction (F(1,14) = 14.78, p = 0.0018).

We used RSA to examine the predictive power of three regres

sors: (1) pointer load model—predicts similarity based on the 

number of items stored, regardless of sensory modality. (2) 

Spatial attention model—predicts similarity based on the total 

number of locations attended regardless of sensory modality 

and pointer load. (3) Sensory modality model—predicts similarity 

based on the stored sensory modality.

Modality-independent pointers and spatial attention 

reflect distinct selection processes

All models exhibited statistically significant correlations (spatial 

attention: W = 136, p = 1.5 × 10− 5; attended modality: W = 

128, p = 3.8 × 10− 4; pointer load: W = 134, p = 4.6 × 10− 5) 

that were sustained throughout both stimulus presentation and 

delay-period phases of the trial (Figure 6B). The spatial attention 

model explained robust variance, starting immediately after 

the second stimulus presentation when the number of attended 

positions could be disambiguated. Critically, the pointer load 

model explained unique variance throughout both stimulus 

A B

C

D E

Figure 4. RSA results for experiment 1 (n = 24) 

Condition labels are denoted by a letter to indicate modality condition (A: Auditory, V: Visual, C: Conjunction), as well as a number to denote set size (1 or 2). 

(A) Empirical representational dissimilarity matrix (RDM), averaged across subjects over delay period (t > 500 ms). 

(B) MDS projection of RDM, color coded by modality, averaged over the delay period. 

(C) Graphical description of tested theoretical models. Darker = more dissimilar, lighter = more similar, arbitrary scale. 

(D) Semipartial correlations of each factor to the empirical RDM over time. Stimulus period denoted by the gray-shaded region, significant time points (Wilcoxon 

signed-rank test, FDR corrected) denoted by colored boxes under the graph. 

(E) Semipartial correlations averaged across the delay period (t > 500 ms). 

***p < 0.001, **p < 0.01, *p < 0.05 (Wilcoxon signed-rank test, uncorrected). 

See also Figure S2 for a replication with a pupil size regressor.
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presentation and the delay, showing that this load signal cannot 

be explained by variations in the spatial extent of attention or by 

modality-specific activity. We also replicated these RSA results 

while swapping the sensory modality model for two models: (1) 

visual load model—predicted similarity based on number of 

colors stored and (2) auditory load model—predicted similarity 

based on the number of sounds stored. This change did not 

affect the outcomes for the pointer load and spatial attention 

models (Figure 6C, pointer load: W = 122, p = 1.68 × 10− 3; 

spatial attention: W = 136, p = 1.5 × 10− 5). Both the visual 

(W = 119, p = 3.14 × 10− 3) and auditory (W = 106, p = 0.025) 

load models explained reliable variance, although this was tran

sient and early for the auditory load model. We note that when 

ranking values prior to computing correlations, as done in prior 

work,39 the auditory load model no longer had a significant semi

partial correlation when averaging across the delay period. How

ever, no other result for this analysis (crucially pointer load) 

changed substantially. These findings bolster the conclusion 

from experiment 1 that modality-specific neural activity was 

tracking sensory activity related to color and sound storage 

rather than a shift between discrete task sets. Furthermore, 

this modality-specific activity is independent from the pointer- 

related activity.

Interestingly, our spatial attention model, which assumed that 

attention was allocated to both targets and distractors, 

explained substantial variance. However, one might predict 

that spatial attention would eventually be restricted to locations 

containing targets. To test this, we reran RSA with a spatial 

attention model based solely on the number of relevant target lo

cations (Figure S1). In fact, this model began to explain some 

variance, particularly toward the end of the delay (Figure S1B). 

However, it did not explain unique variance at any time point 

from that explained by the spatial attention model, which allo

cated attention to both targets and distractors (Figure S1C), 

although the variance explained was significant in the delay 

average (W = 103, p = 0.037). Regardless of which model for 

spatial attention was used, the pointer load and attended modal

ity models explained robust variance throughout the stimulus 

and delay periods. These results suggest an interesting distinc

tion: while signals tracking WM are shaped by relevance early af

ter stimulus onset, signals tracking spatial attention exhibit 

spatial selectivity in a delayed fashion.36

We considered the possibility that our pointer load measure 

may reflect a more generalized signature of cognitive effort. 

While it has been difficult to find precise measures of effort,40

some have argued that it plays a substantial role in the neural 

substrates of WM.41,42 However, many studies that have looked 

at effort and WM load simultaneously, instead of using one as a 

proxy for the other, have identified them as unique signals that 

are both present in nearly all cognitive tasks.17,43 We note that 

the tasks performed were not particularly difficult (mean accu

racies of 95% and 94% in experiments 1 and 2, respectively), 

and there were only modest declines in accuracy in the higher 

load conditions (2% and 7% differences in experiments 1 and 

2, respectively). Nevertheless, we carried out additional analyses 

to address this alternative explanation. Pupil size has often been 

used as an objective measure of effort, particularly when the sen

sory energy of the display is matched across putative variations 

in effort.44,45 Indeed, in prior work, we have directly tested 

whether voltage-based decoding could be explained by varia

tions in pupil size,17 and we found no evidence that variations 

in pupil size could explain voltage-based measures of WM 

load. These findings notwithstanding, we examined the impact 

of effort by replicating all RSA analyses with an additional RDM 

representing each individual’s average baselined change in pupil 

diameter per experimental condition.

The key question was whether or not including pupil data 

undermined our evidence for pointers. The pupil size model 

never explained unique variance, and including it did not have 

a consistent impact across the two experiments. In experiment 

1’s analysis (Figure S2), inclusion of the pupil size regressor 

reduced the variance explained of the pointer load model in 

the delay period (51/58 to 18/58 time points significant), although 

the model remained significant in the aggregate (W = 139, 

p = 0.0399). In contrast, in experiment 2, including pupil size 

had no reliable effect on the variance explained by pointer and 

sensory modality factors (Figure S3A: 67/70 significant time 

points both with and without pupil model, delay aggregate 

W = 114, p = 4.27 * 10− 4), and it showed only a slight reduction 

in the analysis where modality-specific load factors were 

included (Figure S3B: 67/70 to 46/70 significant time points, 

delay aggregate W = 99, p = 0.0128). The inconsistent impact 

of the pupil regressor suggests that cognitive effort is not a 

robust source of the modality-general pointer signal.

100 ms

200 ms

100 ms

200 ms

200 ms

Attend: only colors or only sounds
Set Size 1
3 Locations

Set Size 1
1 Location

Set Size 3
3 Locations

Set Size 3
1 Location

1000 ms

probe

Figure 5. Experiment 2 task 

Subjects attended to either only colors or only sounds. Each trial could have 

either one or three relevant stimuli (set size 1 trials had the same placeholders 

as experiment 1). Stimuli could appear in the same location for all pre

sentations or in 3 unique locations.
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Finally, an MDS projection of these experimental conditions 

into 3D space reveals a pleasingly interpretable cubic configura

tion (Figure 6D). Set size 1 and set size 3 define the top and bot

tom of the cube. Visual and auditory conditions define the left 

and right sides of the cube. And finally, the number of attended 

locations defines the front and back faces of the cube. Thus, 

the MDS plot implies separability between modality-indepen

dent pointers, feature-selective neural signals, and spatial 

attention. To summarize, experiment 2 replicated the initial 

demonstration of a dissociation between load-sensitive and 

feature-specific neural activity while also showing that the num

ber of attended positions explained unique variance in EEG 

activity. These findings corroborate recent claims that the 

deployment of spatial attention and the gating of items into 

WM represent distinct aspects of attentional control.18,20,36

Moreover, these results show that spatial attention cannot 

explain the modality-independent neural activity that tracked 

the number of items stored in WM.

DISCUSSION

WM is a cornerstone for broader intellectual function,46–48 moti

vating the search for a clear taxonomy of its neural components. 

Our findings reveal a modality-general signature of WM storage 

that tracks the number of individuated items stored, independent 

of the sensory modality of those items. Multivariate decoding 

models trained on one sensory modality enabled precise decod

ing of WM load in the other sensory modality. Critically, RSA an

alyses corroborated the presence of this modality-general load 

signal while also showing that distinct variance in ongoing EEG 

activity was explained by the stored sensory modality and the 

number of attended positions in the display. Thus, parallel but 
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Figure 6. RSA results for experiment 2 (n = 16) 

Condition labels (as shown in the empirical RDM) are such that the first letter (A/V) denotes modality, the number (1/3) denotes set size, and the final portion 

(Same/Diff) denotes stimuli appearing in the same or different spatial locations. 

(A) RDMs used in all comparisons (representative empirical RDM, pointer load, and spatial attention). 

(B) RSA results with the sensory modality model (auditory or visual, shown in top right). Left: semipartial correlations of each factor over time. The stim period is 

denoted by the gray-shaded region, and significant time points (Wilcoxon signed-rank test, FDR corrected) are denoted by colored boxes under the graph. Right: 

average correlation over delay period (t > 800 ms). ***p < 0.001, **p < 0.01, *p < 0.05 (Wilcoxon signed-rank test, uncorrected). 

(C) RSA results with auditory and visual modality-specific load models (in top right). 

(D) 3D MDS projection of delay-period empirical RDM, points grouped by sensory modality, spatial attention demand, and WM load (points within the same 

colored plane are consistent within that feature). Tick marks are equal in distance. 

See also Figures S1 and S3 for replications of this effect, an alternate spatial attention regressor, and a pupil size regressor.
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separate neural signals track the number of individuated items 

stored and the featural content of those items.14,49 Moreover, 

we reinforce recent work that has argued for a dissociation be

tween deployments of spatial attention and the selective encod

ing of items into WM.18,36,50

What is the computational role of this modality-general load 

activity? Our working hypothesis is that it reflects the deploy

ment of spatiotemporal ‘‘pointers’’ that bind the selected items 

to the surrounding event context,16,20 an operation that has 

been highlighted in major models of WM21,23,51,52 and in promi

nent theories of dynamic visual cognition.26,27,53 This literature 

elucidates how perception and action in dynamic environments 

require the observer to track attended items through space and 

time, despite changes in appearance or position.26,27 Critically, 

the insight that perceptual inputs typically evolve across an un

folding event has motivated the idea that spatiotemporal 

tracking—sometimes referred to as tokenization53—is distinct 

from the maintenance of the featural details of tracked items. 

This separation affords continuous spatiotemporal tracking 

even when the featural details of the item are unstable. Thus, 

this contextual binding process provides an attractive explana

tion for a modality-independent, item-based signature of the 

number of relevant items stored in WM. Moreover, our findings 

show that these modality-general pointers operate in parallel 

with modality-specific signals that index the specific constella

tion of features held in WM (i.e., visual, auditory, or both). Thus, 

pointers may support item-based contextual binding while paral

lel processes support the maintenance of the attended featural 

details. This said, we are not presently able to rule out other pro

cesses that could generate this signal. For example, subitizing 

and judging numerosity is one process that seems to be limited 

by the number of individuated objects.54 Further work is there

fore necessary to directly link spatiotemporal tracking to this pro

cess of content-independent storage.

Our results are in line with past arguments for supramodal as

pects of attentional networks mediating WM storage.55 For 

example, top-down modulation by the dorsal attention network 

(DAN) has been heavily implicated in WM storage.56–59 Majerus 

et al.60 observed strong generalizability between fMRI patterns 

of WM for visual and verbal stimuli, particularly in posterior intra

parietal sulcus, as well as across the DAN more broadly, during 

encoding and maintenance periods. Similarly, Rizza et al.61

found strong correspondence between activation patterns for vi

sual or auditory presentations of a spatial mapping task in 

several brain regions associated with the DAN, including the 

frontal eye fields and superior parietal lobule. While we see a 

clear connection with these ideas, our findings also show that 

WM encoding generates load signals that are dissociable from 

those tracking the deployment of spatial attention and cognition 

more broadly.18,19,36,62

Importantly, there are extant behavioral findings that, at first 

glance, appear to conflict with our proposal that WM storage de

pends on a modality-general pointer system. Various studies 

have found that WM performance is enhanced when the memory 

set includes mixed stimulus types (e.g., visual and verbal or vi

sual and auditory stimuli).32,63–65 In some cases, little or no inter

ference is observed when information from separate modalities 

is concurrently stored, implying that each modality has its own 

storage capacity. Results like this have motivated models that 

explain behavioral response accuracy based entirely on the sim

ilarity between (noisy) competing memories66 or due to interfer

ence during retrieval instead of limits on storage capacity per 

se.52 Thus, while past work has provided both behavioral and 

neural evidence of item limits on WM storage,67,68 it is nonethe

less possible that these models are addressing distinct stages of 

processing with distinct limiting factors. Although past work sug

gests that item-based load signals are capacity-limited and pre

dictive of individual WM ability,16,34,35 interference that scales up 

with inter-item similarity may have a strong effect on decision 

stages of processing. Thus, interference during decision stages 

could explain the impact of inter-item similarity, even if a com

mon pointer operation supports distinct sensory modalities.

In summary, we present electrophysiological evidence for a 

neural signature of WM storage that generalizes across sensory 

modalities, supporting a broad class of models that distinguish 

between abstract control processes that enable the gating and 

manipulation of specific thoughts and the stimulus-specific rep

resentations that determine the content of those thoughts.20,69,70

We propose that these modality-general load signals reflect a 

content-independent operation for the contextual binding of 

items to the surrounding event, an essential component of cogni

tion in virtually all perceptually guided tasks. Indeed, given the 

prominence of event codes in theories of long-term memory en

coding and access, we hypothesize that the assignment of 

spatiotemporal pointers may serve as the initial step in the for

mation of durable episodic memories.20,25,71
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants were recruited from the greater University of Chicago and Hyde Park community in exchange for payment ($20 / hour). 

Twenty-eight participated in experiment 1 (4 excluded), and twenty in experiment 2 (4 excluded). Subjects were excluded from the 

final sample if fewer than 150 trials per stimulus condition were present after rejection of trials containing artifacts. Participants were 

between the age of 18-35, reported normal or corrected-to-normal color vision and hearing, and no history of stroke or neurological 

disorder. All participants gave informed consent according to procedures approved by the University of Chicago Institutional Review 

Board.

Our target sample size for experiment 1 was 24 participants, a conservative estimate based on prior studies in the lab.16,17 Twenty- 

eight subjects (mean age 24.7, 13 male, 13 female, 1 declined to state, 1 data lost) participated. Four subjects were excluded from the 

final sample due to excessive eye movements and noise in EEG recordings (see artifact rejection). All pupil size analyses were run on 

19 subjects with usable pupil data.

Our target sample size for experiment 2 was 16 participants. We assumed that increasing the difference between set sizes would 

improve overall SNR, and prior pilot studies still found reliable load effects at 16 subjects. A total of 20 participants completed the 

experiment (12 female, 6 male, 1 declined to state, 1 data not saved, mean age, 24.6, SD 4.3), with 16 remaining after artifact rejec

tion. All pupil size analyses were run on 14 subjects with usable pupil data.

We recorded self-identified sex for all participants, with an option to decline to specify. We did not record ancestry, race, ethnicity, 

or socioeconomic status. However, we do not believe that these factors should substantially affect the results. All analyses were per

formed within subjects.

METHOD DETAILS

Experimental procedures

Both experiments were single-probe sequential change detection tasks. We used bimodal stimuli, in which a colored diamond was 

presented with each auditory stimulus, in a spatially colocalized manner. We used a set of 5 recordings of environmental sounds used 

in prior studies,75,76 clips each of which lasted 200ms. The possible sounds were of a camera shutter, crow, car horn, bell, or zipper, in 

addition to a distractor white noise sound. Stimuli were matched on intensity (70 dB SPL), sampling rate (44100 Hz), and duration. All 

stimuli had a bias towards the right (90◦), left (-90◦) or center (30◦), and were synthesized by filtering recordings through a head-related 

transfer function77,78 based on volume balance. Visual stimuli were colored red #FF0000, yellow #FFFF00, green #00FF00, cyan 

#00FFFF, blue #0000FF, or gray (distractor) #555555 diamonds with a 1 degree visual angle radius, lateralized to the left, right 

(both by 6 degrees), or center of fixation. Luminances of all stimuli were, respectively, 25.2, 106.9, 83.84, 92.61, 9.50, or 

17.90 cd/m3. Stimuli were jittered by up to 2 degrees from their center point. Stimuli presented at the center location could not be 

less than 1.5 degrees from fixation. We predicted that spatial and temporal colocalization would act as grouping cues which would 

cause the stimuli would be viewed as bound audiovisual objects; this aligned with our results and with subjects’ subjective experi

ence (upon being asked after data collection).

In experiment 1, two pairs of visual and auditory stimuli were presented for 200ms, with a 100ms ISI. In set size 2 trials, 2 target 

stimulus pair were presented. In set size 1 trials, placeholder pairs (gray squares and white noise) were presented at one timepoint 

in order to match stimulus energy across set sizes. The order of target pairs and placeholder pairs was random across trials. We 

manipulated the information subjects stored in WM by directing subjects to only remember auditory items, visual items, or all items 

(conjunction) for a given block. Therefore, experiment 1 had a 3 (attended-modality conditions) x 2 (set sizes) design. Subjects 

completed 24 blocks of 56 trials, cycling between sensory modality conditions, for a total of 1,344 trials and 224 trials per cell of 

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

EEG data This paper https://doi.org/10.17605/OSF.IO/J84R5

Software and algorithms

Analysis code This paper https://doi.org/10.17605/OSF.IO/J84R5

Scikit-learn Pedregosa et al.72 https://github.com/scikit-learn/scikit-learn

Pingouin Vallat73 https://github.com/raphaelvallat/pingouin

Scipy Virtanen et al.74 https://github.com/scipy/scipy
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the design. After a 1s delay following the second stimulus pair presentation, a single probe was presented according to the attended 

modality. Subjects answered whether this was one of the previously presented objects.

The goal of experiment 2 was to determine whether the modality general load signal seen in experiment 1 was driven by spatial 

attention, or if it persisted even when spatial attention was directly manipulated. We replicated experiment 1’s design with the 

following modifications. First, we varied the number of attended spatial locations. In ‘‘same location’’ conditions, all stimuli appeared 

in the same location after each other, randomly selected from the options of left, right, or center, ensuring that all trials had equal 

demands to spatial attention regardless of working memory load. ‘‘Different location’’ conditions were identical to those in experi

ment 1, with stimulus pairs appearing at distinct locations within a presentation sequence. Second, we removed the conjunction con

dition to reduce the experiment run time. Finally, we changed the set sizes to 1 and 3 to increase the magnitude of the possible spatial 

attention confound, as well as the magnitude of the putative WM load signal. This design allows us to test the generalization of load 

signals while controlling the spatial information between conditions. Therefore, experiment 3 had a 2 (attended-modalities) x 2 (set 

sizes) x 2 (spatial conditions) design. In total, subjects completed 26 blocks of 56 trials, for a total of 1456 trials and 182 trials per cell of 

the design. All other details, including stimuli and placeholders, were identical to experiment 1.

Apparati and Data Acquisition

Subjects were tested in a dimly lit, electrically shielded chamber. Stimuli were presented on a neutral gray background (RGB: 

127,127,127). Subjects performed the experiment on a gamma-corrected 24-in. LCD monitor, with a 1920x1080 resolution and 

120Hz refresh rate, at a distance of 75 cm. Subjects gave their response by a keyboard press (z = same, / = different), and rested 

their heads on a foam chin rest for the duration of trial blocks. Auditory stimuli were presented via in-ear earphones (Neurospec 

ER3C), with disposable foam tips. Experiments were designed using PsychoPy3.79 During all trials, subjects were expected to fixate 

on a cross in the center; we used the shape identified by Thaler et al. (2013)80 as optimal for fixation. We applied a real-time eye- 

tracking rejection procedure during the experiment. In this, any eye movements (determined by eye-tracking) of more than 1.5 de

grees visual angle from the center of fixation would cause the trial to be immediately aborted and a trial of the same condition 

repeated at the end of the experiment.

We recorded EEG activity from 30 active Ag/AgCl electrodes (Brain Products actiCHamp) at International 10-20 system sites 

Fp1/2, Fz, F3/4, F7/8, FC1/2, FC5/6, Cz, C3/4, CP1/2, CP5/6, Pz, P3/4, P7/8, PO3/4, PO7/8, Oz, and O1/2. Prior to starting recording, 

impedances for all electrodes were below 10 kΩ. A ground electrode was placed at position FPz, and two references were placed on 

the left and right mastoids. All electrodes were referenced online to the right mastoid, and rereferenced offline to the algebraic 

average of the left and right mastoids. Additionally, to track eye movements, we recorded EOG data using passive electrodes. 

We placed a ground electrode on the left cheek, two electrodes to track horizontal eye movements ∼ 1 cm from the horizontal 

canthus of each eye, and two to track vertical eye movements above and below the right eye. Data were recorded at 1000 Hz 

and filtered online (high cutoff: 80Hz, low cutoff: 0.01 Hz, slope: 12 dB / octave) using BrainVision Recorder on a Windows PC. 

Eye-tracking data was collected using a desk-mounted infrared EyeLink 1000 Plus system (SR Research) at 1000 Hz, that was cali

brated between blocks and after any breaks. We used eye-tracking data preferentially for artifact rejection, and EOG when eye- 

tracking was not available or malfunctioning.In experiment 1, data were segmented offline to 1800 ms epochs time-locked to the 

onset of the first stimulus (-300 ms to +1500 ms), and baseline-corrected with the 300 ms immediately prior to stimulus onset. In 

experiment 2, 2100 ms epochs were used (-300 ms to +1800 ms).

QUANTIFICATION AND STATISTICAL ANALYSIS

Overview

For each analysis, sample size (number of participants) and the statistical tests used are present in the figure legends. Sample size 

was uniform for all analyses in the same figure. Where asterisk notation was used to denote significance, we used the following 

thresholds: *** = p < 0.001, ** = p < 0.01, * = p < 0.05, n.s = p > 0.05. P values and Bayes Factors for statistical tests, where applicable, 

are presented in the results text. When evaluating performance over time, significant time windows are marked with a colored box, 

corresponding to a FDR corrected p-value (see Statistical Tests subsection) below 0.05. Bar heights and plot lines represent means, 

and error bars (included shaded regions) denote SEM.

Artifact Rejection and Subject Exclusions

We applied an automated artifact rejection procedure to identify trials contaminated by ocular or muscular artifacts, and then visually 

inspected all trials to manually reject significantly noisy trials or remove false positives from rejection (these primarily occurred due to 

drift in the EOG or brief lapses in eye-tracking recording. Trials were rejected if they met any of the following criteria:

- Eyetracking: Eye movements of over 1.5 degrees visual angle away from fixation.

- EOG: Any trial where the absolute EOG value was greater than 75 μV from pre-trial baseline. This was only used when eye- 

tracking was not available for a subject.

- Blinks: Trials where the eye-tracker lost focus on the eye for any portion. Several of these were false positives, and were re- 

included in the final sample if vertical EOG and frontal EEG electrodes did not show a deflection.

- Saturated Electrodes: Trials where any channel has flatlined or exhibits a step function
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- Additional EEG artifacts: skin potentials, muscle artifacts, and excessive noise. In experiment 1, we excluded 1 electrode from 

analysis for 1 subject due to high noise. However, we still had sufficient data to successfully run all analyses.

In experiment 1, we rejected between 5.6% (conjunction ss1) to 6.5% (auditory ss1) of trials. In experiment 2, we rejected between 

3.5% (auditory ss3 different locations) to 4.3% (auditory ss1 1 location) of trials.

Subjects were excluded from the final sample if they had fewer than 150 trials per load condition remaining after artifact rejection.

Decoding analyses

We applied a multivariate binned-trial classification procedure (mvLoad) to classify working memory load within subjects.35 When 

attempting to use cross-decoding to evaluate the generalizability of neural patterns across feature dimensions, we used a parallel 

but higher-powered alternative metric to decoding accuracy which we called ‘‘hyperplane contrast.’’ The goal of this approach is 

to draw a hyperplane in n-dimensional space at the midpoint of the logit function as determined by the training set. We then measure 

the average signed distance of each condition to this hyperplane (scikit-learn: decision_function) and take the difference between the 

two distances as the contrast. This is done both for held-out samples from the training set, as well as a test group that the classifier is 

entirely naı̈ve to when appropriate. This is analogous to estimating the magnitude of the multivariate difference vector separating 

each pair of conditions, and is insensitive to the types of additive shifts that changes in other signals may cause.17 These distances 

are additionally easier to interpret than classification accuracy, as they are not affected by ceiling effects and apply in a continuous 

space as opposed to the average of several binary classifications.

We used the following pipeline for decoding analyses. On a given iteration, we first formed ‘‘bins’’ by randomly sampling trials from 

the same condition into groups of 20, and averaging across the trials in each group. This was done without replacement, and any trials 

that were not assigned to a bin (due to the trial counts not cleanly dividing by 20) were dropped for that iteration. We then split these 

binned trials into a training (70%) and testing (30%) set using the train_test_split function from scikit-learn.72 Training sets were al

ways balanced via random dropping to ensure that an equal number of trial bins from each training condition were used. We averaged 

these time series using a sliding window (50ms, 25ms step). Training data were standardized for each time window using the 

StandardScaler function, and test data were standardized to the mean and standard deviation of the training data. These data 

were then fed into a regularized logistic regression classifier (scikit-learn LogisticRegression), and used to predict appropriate labels 

and a confidence value for the test set. This procedure was repeated over 1,000 iterations, including the initial random binning, for 

each subject and each time window.

We chose a bin size of 20 a priori based on prior work.16,18 However, to ensure our results were invariant to the specific bin size 

used we performed a downsampling analysis while varying the varying the bin size, using trial bins of size 1, 5, 10, 20, and 30 

(Figure S4). SNR generally monotonically increased with greater bin size, particularly when crosstraining. We additionally observed 

sustained crosstraining performance throughout the delay period when using a bin size of 10 or greater; the 1 trial and 5 trial bins were 

more sporadic.

Statistical Tests

Hyperplane contrasts were evaluated using a one-tailed paired t-test, as we would not expect these to be meaningly lower than zero. 

We compared the mean contrast of each subject at each timepoint. Because we conducted independent significance tests at mul

tiple timepoints, all p-values were corrected according to the Benjamini-Hochberg procedure,81 with a false discovery rate set to 

0.05. When we were comparing the values of two contrasts against each other, we used a combination of one-tailed and two-tailed 

tests based on our alternative hypotheses.

For all parametric tests, we calculated the bayes factor (BF) using the pingouin package,73 which compares the relative degree of 

evidence for the null and alternative hypotheses. Calculation of bayes factors addresses one of the primary weaknesses of null-hy

pothesis significance testing, which is its difficulty in interpreting nonsignificant results. Instead of providing a likelihood statistic for 

the null hypothesis, the bayes factor represents the likelihood ratio of the null and alternative hypotheses. Generally, a BF of 1 rep

resents equal evidence for both (absence of evidence), while BFs of 1/3 and 1/10 represent weak and strong, respectively, evidence 

for the null hypothesis, and BFs of 3 and 10 represent weak and strong evidence for the alternative. All other statistical results were 

calculated using Scipy.74

To ensure robustness of our correlations in Figure 4, we removed subjects with outlier values from regressions. For each regres

sion, we calculated Cook’s distance for each datapoint to identify high-leverage outliers. We defined influential subjects as those with 

a Cook’s distance greater than 0.5. Two high-leverage subjects, with Cook’s distances of 0.54 and 0.95 were excluded. We repli

cated all other analyses for experiment 1 with these two subjects excluded, and did not observe any qualitative differences.

Representational Similarity Analysis

We additionally used representational similarity analysis,82 a form of multivariate pattern analysis which analyzes the similarity of acti

vation patterns in the brain across conditions in order to more effectively model the effects of load and stimulus modality simulta

neously. Unlike evaluating classifier discriminability, it allows us to examine the effects of one factor (say, set size) when the effects 

of others are controlled for.

We performed RSA analyses by computing a distance metric between each possible pair of conditions, and then combining them 

into a single matrix of dissimilarities (representational dissimilarity matrix: RDM). The distance metric used here was a crossvalidated 
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estimate of the Mahalanobis distance, also known as the linear discriminant contrast (LDC), which produces a distance metric that is 

largely unbiased by noise.83–85 We note that the LDC is conceptually analogous to the hyperplane contrast presented above, just 

based specifically on a Linear Discriminant Analysis (LDA), rather than a Logistic Regression model. This distance metric is partic

ularly ideal for inference tests, as unlike non-cross-validated distance measures, which have a lower bound of 0, the LDC can 

take on negative values, such that if two samples vary solely due to chance, the mean of the distribution of their LDC values across 

iterations will be zero. This procedure used a similar pipeline as the decoding analyses, although we did not bin trials prior to clas

sification. Training and testing trials were obtained using the StratifiedShuffleSplit function from scikit-learn using a 50/50 split. 

Distances were calculated over subjects and timepoints using a 50 ms sliding window (25 ms step), over 10,000 iterations, and sub

sequently averaged over each iteration. We computed LDC between two condition pairs as

d2
M( x

→
; y
→
) =

(

x
→

train − y
→

train

)

∗ Σ− 1
train ∗

(

x
→

test − y
→

test

)

Where x
→

and y
→

are the average EEG voltage values for a given condition at the given timepoint (i.e. a vector of the same length as the 

number of electrodes), computed for both the training and testing half, respectively, and Σtrain is the covariance matrix of the training 

set. We calculated this by first demeaning trials by subtracting the condition average voltage, computing the covariance matrix 

across conditions, and then regularizing by the Ledoit-Wolf procedure.85,86

In order to evaluate models, we designed RDMs which were intended to describe the predictions of different theoretical factors 

which may be present in the data. Prior work17,18,39 has rank transformed RDMs prior to calculating correlations. We did not do 

so to improve interpretability, but note that the results of our models are nearly qualitatively identical with or without the rank trans

formation; the only noticeable effect was that the auditory load model in Figure 6C no longer became significant after ranking. We 

then applied a linear regression model with the empirical RDM as the independent variable, and each theoretical factor model as 

a predictor. Then, we calculated the semipartial correlation (a measure of the unique variance explained by each regressor) of 

each theoretical model to the empirical RDM.

In Experiment 1, we tested the following theoretical factors. First, we included a pointer load model, assumed a distance of 0 be

tween all conditions of the same set size regardless of attended modality (e.g. visual-1 and auditory-1) and a distance of 1 between all 

conditions of the other set size (e.g. visual-1 and visual-2). Second, we included an alternative, feature based model, which coded 

each condition by the number of feature values being maintained. In this model, for example, conjunction set size 2 would have 4 

features (2 colors and 2 sounds), while visual set size 1 would have 1 feature, meaning the difference between them is 3. We also 

included two models designed to code for how the different modality conditions may be represented. In the Graded model, the 

conjunction condition fell between the visual and auditory conditions (e.g. auditory=-1, conjunction=0, visual=1), reflecting a single 

attended-feature axis. In the Discrete model, each condition (auditory, conjunction, visual) was equidistant from the other 2 (a dis

tance of 1 to each other), reflecting an equilateral triangle.

Experiment 2 included the following theoretical factors. First, the pointer load model was identical to that of experiment 1, given 

there were only 2 set sizes to compare against. Next, a spatial attention factor was coded based on the number of presented loca

tions (3 vs 1), with a distance of 0 between the conditions with the same number of locations and a distance of 2 between conditions 

with a different number of locations. We also examined a version of this spatial attention factor that was coded based on the number 

of relevant target locations (i.e., all set size 1 conditions, as well as all set size 3 with repeated locations, only had 1 target location), but 

that model did not explain as much unique variance as the pure spatial attention factor, nor did it change the results relating to the 

other factors. We also included 2 different modeling approaches to capture modality-specific signals. In one model, we coded only 

for the sensory modality, such that all conditions of a given modality had a distance of 0 between them, and all condition pairs that 

spanned the 2 modalities had a distance of 1. This model was analogous to the attended feature models used in experiment 1. In 

contrast, we also tested a model which examined modality-specific load signals. This consisted of 2 RDMs, on per modality, using 

the following logic. Set size 1 trials for a given modality (e.g. visual) would have a modality-specific load of 1, set size 2 trials of that 

modality would have a modality-specific load of 2, and any set size of the other modality (auditory set size 1 or 2 in this example) would 

have a modality-specific load of 0.

Prior to running regression analyses, we calculated the variance inflation factor (VIF) for each empirical model to ensure that es

timates of each theoretical model’s individual contribution were reliable and not potentially deflated; in all cases, each theoretical 

RDM’s VIF was <3, indicating low multicollinearity between variables. For each factor, the semipartial correlation was calculated 

as the square root of the difference between the full model’s R2 and the R2 value of a sub-model with this factor removed, multiplied 

by the sign of the factor’s β in the full model. This was done for each subject. We used wilcoxon tests to evaluate whether semipartial 

correlations were significant at the group level, while applying the Benjamini-Hochberg procedure when testing over multiple time

points. The presence of a statistically significant semipartial correlation can provide evidence for the unique contribution of a given 

theoretical factor to the neural signal.

To visualize the representational structure of the conditions, we applied metric multidimensional scaling (MDS) to the distance 

matrices calculated for RSA. We used both 2-D and 3-D projections based on experimental conditions (2-D for experiment 2’s 

2-level design and 3-D for experiment 3’s 3-level design). We first averaged the RDM over all subjects and delay period timepoints, 

and then used the metric MDS class implemented by scikit-learn to calculate the appropriate projection.
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