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Previous research suggested that working memory (WM) does not play any significant role in 

visual search. In 3 experiments we investigated the search difficulty and individual differences in 

WM capacity as determinants of WM involvement during visual search tasks, using both 

behavioral and electrophysiological markers (i.e., the contralateral delay activity (CDA), which 

is a marker for WM capacity allocation). Human participants performed a visual search task that 

contained a target, neutral distractors, and a flanker distractor. Overall, we found that as the 

search difficultly increased (as indicated by longer reaction times) so did the role of WM in 

performing the search task (as indicated by larger CDA amplitudes). Moreover, the results 

pinpoint a dissociation between the two types of factors that determined the WM involvement in 

the search process. Namely, individual differences in WM capacity and search difficulty 

independently affected the degree to which the search process relied on WM. Instead of showing 

a progressive role, individual differences in WM capacity correlated with the search efficiency in 

all search conditions (i.e., easy, medium, and difficult). Counter intuitively, individuals with high 

WM capacity generally relied less on WM during the search task.  
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 Models of visual search argue that a range of cognitive mechanisms must work in concert 

to help us find targets amongst distractors in the visual environment. Aside from the obvious 

perceptual and attentional processing demands, several models have also proposed that visual 

working memory (WM) is critical for a number of important operations during visual search, 

such as representing the target template, comparing the target template to possible candidate 

items, and categorizing the items in the search array (Bundesen, 1990; Desimone & Duncan, 

1995; Duncan & Humphreys, 1989). Consistent with this view, evidence from several primate 

electrophysiological studies has indicated that during visual search, neurons that are selective for 

the search target often remain active during a delay period prior to the onset of the search array, 

presumably indicating a neural correlate of a target template being actively maintained in 

memory. Moreover, cells in inferior-temporal cortex also show enhanced firing rates during 

search itself, just prior to a saccadic eye movement towards that target (Chelazzi, Miller, Duncan 

& Desimone, 1993). Interestingly, the same brain areas show template related activity during the 

delay period, followed by an enhanced response to a matching target during a visual WM tasks 

(Miller & Desimone, 1993; 1994) which led some to argue that visual search is just a variant of a 

working memory task (Desimone & Duncan, 1995).   

 These proposals have received limited empirical support from human research.  For 

example, Woodman, Vogel and Luck (2001) used a dual-task approach to investigate the reliance  

upon WM during visual search, by having participants perform both a visual search task and a 

change detection task (intended to fill visual WM) on each trial. Surprisingly, they found that 

visual search efficiency was not impaired while participants were concurrently engaged in a 

demanding WM task, suggesting that WM plays a nonsignificant role during visual search. Other 
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dual task studies have found some evidence for the involvement of WM during visual search, but 

only when the target varied from trial to trial (Woodman, Luck & Schall, 2007) or when spatial 

WM was filled (Oh & Kim, 2004; Woodman & Luck, 2004) rather than the object WM task used 

in Woodman et al (2001). However, from these dual task approaches alone, it is difficult to assess 

the extent to which WM was utilized during search because dual task costs might also reflect 

processes necessary to coordinate the two tasks (in order to reduce interference), or even the 

reliance of offline long term memory to help shoulder some of the WM demands.    

 The current work aimed to assess and quantify the reliance upon WM storage during 

visual search by utilizing a single visual search task while measuring an ERP component that 

reflects the amount of information that is currently active in WM (Vogel & Machizawa, 2004). 

Thus, the focus of the current study was to measure how much information (e.g. targets and 

distractors) from a visual search display is represented in WM during the search process. 

Moreover, we examined this relationship across various levels of search difficulty: when the 

search was easy (“pop-out”),  medium and difficult, and when the target position was cued in 

advance. In addition, to further characterize this link between WM and visual search, we 

examined how individuals differed in their WM and search abilities.   

 Material and Methods

Overview

The current study used a perceptual search task with easy, medium and difficult search 

conditions (Johnson, McGrath & McNeil, 2002; Lavie & Cox, 1997), in which subjects had to 
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indicate which one of the two possible target letters was present in a circular display (see Figure 

1A and 1B). 

 In order to quantify the online role of WM during the visual search task we used an 

electrophysiological measure of WM capacity, the contralateral delay activity (the CDA, Vogel & 

Machizawa, 2004). The CDA has been shown to be an excellent marker for visual WM capacity 

allocation during change detection tasks (McCollough, Machizawa, & Vogel, 2007; Vogel, 

McCollough & Machizawa, 2005). Importantly, the CDA has also been observed in tasks that 

required a mental manipulation of visual information even without an explicit delay period (e.g., 

Drew & Vogel, 2008; Jolicœur, Brisson, & Robitaille, 2008; Brisson & Jolicœur, 2007; Jolicœur, 

Sessa, DellʼAcqua, & Robitaille, 2006; Prime & Jolicœur, 2010). For example, Drew and Vogel 

measured the CDA in a multiple object tracking task, while Prime and Jolicœur used the CDA as 

an index of WM involvement during a mental rotation task. Consequently, the CDA can be a 

useful and sensitive measure of the reliance upon WM storage even in situations without explicit 

memory requirements, and in the present study we will take advantage of this property in the 

context of a visual search task.    

 The goal of Experiment 1 was to verify that WM plays a role during the current visual 

search paradigm. We used a difficult search task in which the subject must find a predefined 

letter amongst 5 unique letter distractors.  In one condition, the position of the target was cued in 

advance, eliminating any ambiguity as to where the target would appear and hence greatly 

reducing the need to search for the target amongst the distractors (see Figure 1A). By reducing 

the search difficulty in this way we expect that the demands for representing information in WM 

should be greatly decreased, which would result in a reduction in the CDA amplitude that is 
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accompanied by faster response times. Moreover, such a relationship would predict that the 

individuals who could better utilize this spatial cue to for the target position would rely less on 

WM during the search task. Consequently, the “cuing benefit” on response time should correlate 

with CDA amplitude. In Experiments 2 and 3 we used a similar approach to examine whether 

WM plays an increasing role in visual search as the search becomes more difficult by 

manipulating the uniqueness of the distractors in the search array, which is well known to 

increase overall response times during search (e.g., Duncan & Humphreys, 1989). Instead of 

using a cue that eliminated the need to search (as in Experiment 1), in Experiments 2 and 3 we 

manipulated the search difficulty. Assuming that WM plays an important role during the search 

process, we should expect to find an increase in WM involvement as the search becomes more 

difficult. 

 In addition to measuring the sheer quantity of information represented in WM across 

these search difficulty manipulations, Experiments 2 and 3 also aimed to examine whether the 

identity of the distractors within the array determined how much information was represented in 

WM during the search process. We measured this in two ways. First, as described above, we 

manipulated search difficulty by increasing the uniqueness of the distractors within the search 

array as a means to evaluating whether an increasing number of distinct distractor identities leads 

to an overall larger reliance upon representing more information in WM. Second, on some trials, 

the circular search array was accompanied by a peripheral distractor (flanker) that either matched 

the target for that trial (compatible), matched the incorrect target (incompatible), or was not 

present (no flanker). By comparing the CDA amplitude for trials with and without the flanker, we 

can evaluate under which search conditions the peripheral flanker stimulus was represented in 

6



WM. In order to distinguish between the two types of distractors, in the following sections we 

will refer to the peripheral distractor as the “flanker”, and to the letter distractors around the 

target as the “distractors”.

Participants

 All participants gave informed consent following the procedures of a protocol approved by 

the Human Subjects Committee at the University of Oregon. All subjects were members of the 

University of Oregon community and were paid $10 per hour for participation. Each experiment 

had 18 participants in the final analysis (8 females and 10 males in Experiment 1, 6 females and 

12 males in Experiment 2, and 12 females and 8 males in Experiment 3) . Subjects with more 

than 25% rejection rate due to eye-blink or eye-movement were replaced (one in Experiment 1, 

and two in Experiment 2). 

  

Measuring visual working memory capacity

 In each experiment, participants first completed a behavior-only visual working memory 

task before starting the ERP experiment. The working memory task consisted of a change 

detection task with arrays of 4, 6, and 8 colored squares with a 1 s retention interval (Luck and 

Vogel, 1997; Vogel et al., 2001). We computed each individual’s visual memory capacity with a 

standard formula (Pashler, 1988; Cowan, 2001). The formula is K = S(H- F ), where K is 

the memory capacity, S is the size of the array, H is the observed hit rate, and F is the false alarm 

rate. 

  

7



Electroencephalography recording 

 ERPs were recorded in each experiment using our standard recording and analysis 

procedures (McCollough et al., 2007), including rejection of trials contaminated by blinks or 

large (>1°) eye movements. We recorded from 22 standard electrode sites spanning the scalp, 

including international 10/20 sites F3, F4, C3, C4, P3, P4, O1, O2, PO3, PO4, T5, T6, as well as 

nonstandard sites occipital left (OL) and occipital right (OR) (midway between O1/2 and T5/6). 

The horizontal electrooculogram (EOG) was recorded from electrodes placed 1 cm to the left 

and right of the external canthi to measure horizontal eye movement, and the vertical EOG 

was recorded from an electrode beneath the right eye referenced to the left mastoid to detect 

blinks and vertical eye movements. Trials containing ocular artifacts, movement artifacts, or 

amplifier saturation were excluded from the averaged ERP waveforms. Furthermore, participants 

who had >25% of trial rejections in any condition were excluded from the analysis. The 

electroencephalography and EOG were amplified by an SA Instrumentation amplifier with a 

bandpass of 0.01– 80 Hz (half-power cutoff, Butterworth filters) and were digitized at 250 Hz by 

a PC compatible microcomputer.  

Stimuli and procedure- Experiment 1

 Each trial started with the presentation of a fixation point (“+”) in the middle of the 

screen for 500 ms. Then, spatial cues (“-”) identified the stimuli positions (see Figure 1A). In the 

”neutral” condition all positions were cued. In the target cued condition, only the future target 

position was cued (please note that even though the cue was 100% valid, we actually cued 2 

positions- one at each side). The cues were presented for 500 ms, followed by a fixation only 
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display (250 ms), followed by the visual search display that flashed for 500 ms. The next trial 

started 800 ms after the response of the preceding trial. The visual search array consisted of a 

bilateral display in which each side included 6 letters, arranged to form a circle. One side of the 

display was red and the other was green (randomly determined). Half of the subjects searched for 

the target on the green side, and the other half on the red side. One of the letters was either a “X” 

or a “Z”, and the subjects had to indicate which of these target letters were presented in each trial 

(see Figure 1A). the letters “M”, “N”, “K”, “S” and “V” (the exact order was randomly 

determined) occupied the remaining 5 positions. The design of Experiment 1 resembles a study 

by Johnson, et al., (2002) with the exception that we did not use flanker stimuli in Experiment 1.    

 Each participant performed 16 trials of practice in each cue condition, followed by 16 

blocks of 80 trials each (8 blocks for each cue condition). 

Stimuli and procedure- Experiments 2 & 3

Except as note below, all other procedures were identical to Experiment 1. In Experiment 2,  we 

used the difficult visual search condition (identical to Experiment 1) and an easy (“pop out”) 

search condition. Experiment 3 involved the same easy condition as in Experiment 2 and a 

medium visual search condition (See Figure 1B). In both the easy and medium search conditions, 

the visual search array flashed for 200 ms. The difficult search condition (Experiment 2) was 

flashed for 500 ms.  

 In the easy search condition, an “O” was presented as a distractor in all the remaining 

positions (see Figure 1B left panel). In the medium search condition,  the letters “M”, “N” and 

“K” occupied 3 of the remaining 5 positions, and the other two positions were occupied with 
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“O” (see Figure 1B left panel). The exact position of the target and the distractor letters was 

randomly determined in each trial. In addition, in 75% of the trials a bilateral flanker letter was 

presented outside the circle. The identity of the flanker letter was either a “X” or “Z” (randomly 

determined), and subjects were instructed to ignore it  (see Figure 1B left and right panels). On 

the other 25% of trials, no flanker was presented so that the display consisted of only a circle of 6 

letters on both sides of fixation (Figure 1B medium panel).  

 Each participant performed 16 trials of practice in each experimental condition, followed 

by 16 blocks of 80 trials each (8 blocks for each condition) 

CDA analysis

 The raw EEG wave was segmented into 900 ms epochs starting 200 ms before the search 

display array onset. Only correct trials were included in the analysis. Separate average 

waveforms for each condition were then generated, and difference waves were constructed by 

subtracting the average activity recorded from the electrodes ipsilateral to the memorized array 

from the average activity recorded from electrodes contralateral to the memorized array. For all 

statistical purposes that were related to the CDA, we used the averaged activity between 350-600 

ms time locked to onset of the search display.  

 We will only present the results from the OL/OR electrodes because that is where the 

CDA amplitude is most evident, however, the exact same pattern of results were observed over 

the  O1/O2, P7/P8 and PO3/PO4 pairs of electrodes. 

CDA and Flanker size correlations (Experiments 2 & 3)
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 In order to estimate whether the flanker stimulus was represented in visual WM and 

whether this representation correlated with the behavioral flanker effect, we subtracted the CDA 

amplitude during the no-flanker condition from the compatible and incompatible conditions for 

each subject. Behavioral Flanker size was calculated for each individual level by subtracting RT 

in the incompatible condition from RT in the compatible condition. 

Results

Experiment 1

Behavioral Results

 Target cued trials were 124 ms faster than neutral trials (1047 and 923 ms for the neutral 

and the cue-valid conditions, respectively, t(17) = 6.35, p < .0001, the confidence interval1 is 28 

ms), indicating that the search was considerably easier in the target cued condition.

Electrophysiological Results

 As can be seen in Figure 2, the CDA had a lower amplitude in the target cued condition 

relative to the neutral condition, t(17) = 5.67, p < .0001 (.03 and -.69 μv for the target cued and 

neutral conditions, respectively, the confidence interval is .18 μv), demonstrating that fewer 

items were recorded in visual WM in the target cued condition (see Figure 2A). This confirms 

that WM played a significant role only when a search was needed. 

Correlations between CDA and behavioral performance
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 The cuing benefit in RT (RT neutral - RT cue-valid) correlated with the respective CDA 

difference (i.e., CDA neutral - CDA valid), r = -.66, p < .005, such that the subjects who showed 

a greater RT benefit from the cue were more likely to show a corresponding CDA reduction 

during search (see Figure 2B). This relationship indicates that the subjects who were using the 

cue less efficiently were also relying upon WM to a greater extent during search. Along similar 

lines, we also tested for a relationship between an individual’s WM capacity (measured in the 

change detection procedure) and his or her reliance on WM storage during the visual search task 

(measured again as the reduction in CDA amplitude between the cued and neutral conditions). 

Interestingly, WM capacity strongly correlated with the cue related CDA difference, r = .51, p < .

05, such that high capacity individuals showed a larger cue-related CDA reduction than low 

capacity individuals (note that since that in Experiments 2 & 3 the “raw” CDA amplitude 

correlated with WM capacity in all condition, we used a partial correlation controlling for the 

initial CDA amplitude). In other words, low WM individuals were less able to use the cue in 

order to reduce the involvement of WM during the search process than their high capacity 

counterparts. This observed relationship is highly consistent with previous reports demonstrating 

an inverse relationship between memory capacity and the efficiency of attentional filtering 

(Vogel et al, 2005; Fukuda & Vogel, 2009; in press).

 The results of Experiment 1 demonstrated that search depends on WM primarily when 

active search is required to find the target. It further established a direct link between the reliance 

on WM storage (as indicated by the CDA) and the overall RT improvement when a cue 

minimized the need to search amongst the distractors (see also Emrich Al-Aidoors, Pratt & 

Ferber, 2009), such that faster searches rely less on WM.  In Experiments 2 and 3, we further test 
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the hypothesis that WM plays an increased role in visual search as finding the target becomes 

more difficult, both at the task and at the individual level.

Experiments 2 & 3

 Experiment 2 compared easy (pop-out) and difficult (identical to Experiment 1) search 

tasks. Experiment 3 included the same easy (pop-out) search condition as in Experiment 2, and a 

medium-difficulty search condition (see Figure 1B). If WM is indeed progressively involved in 

visual search as the search becomes harder, we would expect comparable increases in search RT 

and CDA amplitudes. In addition, the search display (in all conditions) sometimes included a 

flanker stimuli (whose identity could either match or mismatch the target, see Lavie & Cox, 

1997) that appeared outside the “circle” of possible targets. Participants were instructed to ignore 

the flanker and to only look for the target within the circular display of items.

Analysis Overview

 We first analyzed the behavioral results in order to verify that the search difficulty 

manipulation resulted in longer RTs, comparing the easy search condition to the difficult 

(Experiment 2) and medium (Experiment 3) search conditions. We then examined whether the 

same pattern was evident in the CDA amplitude as expected if the visual search difficulty 

dictates the degree of WM involvement. In the third part of the results section we analyzed 

whether the CDA amplitude and accuracy data correlate with individual differences in WM 

capacity. Finally, we analyzed whether the identity of the flanker influenced search performance 

and CDA amplitudes.
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Experiment 2

Behavioral Results

 As expected RT was 237 ms faster in the easy “pop-out” condition relative to the difficult 

search condition (763 and 1001 ms in the easy and difficult search conditions, respectively), 

F(1,17) = 95.59, MSE = 18,342.68, p < .001 (the confidence interval is 22 ms).

 

Electrophysiological Results

 Mean CDA amplitude in a time window of 350 to 600 post search array was taken as a 

dependent variable. Similar to the RT analysis, the CDA mean amplitude was higher in the 

difficult search condition (-1.56 μv) relative to the easy search condition (-.39 μv, the confidence 

interval is .27 μv) F(1,17) =  37.06, MSE = .99, p < .001 (see Figures 3), reflecting that WM was 

more engaged when the visual search task was difficult. 

 The present results allowed us to further test our argument: if indeed the CDA is a 

reliable measure of WM involvement during the search process, then even within the difficult 

search condition, the trials in which the subject found the target quickly (fast RT) should show 

smaller CDA amplitudes relative to the trials in which they took longer to find the target (slow 

RT). We argue that the fast-slow RT difference should also be mirrored in the CDA amplitude 

because presumably on fast trials WM would be engaged to a lesser extent. In order to test this 

prediction, we divided the RT distribution for each participant into the fast and slow trials (25% 

vs 75% percentile) and analyzed the CDA amplitude separately for these conditions. The data for 

the difficult search is the most informative for this analysis, because this is the condition in 

14



which WM was needed in order to perform the search (while the easy search exhibited almost no 

CDA amplitude). RT in for the 25 percentile was 781 ms and RT in the 75 percentile was 1207 

ms. As can be seen in Figure 4, the CDA  was initially comparable between the fast and slow 

search trials, but then appeared to become considerably smaller for the fast trials as the trial 

progressed. We measured this time-course effect by comparing the two types of trials over two 

CDA time-windows: 350-500 ms and 550-700 ms. While fast and slow trial amplitudes were not 

significantly different over the 350-500ms window (t(17) = .27, p > .78), the CDA for fast search 

trials was significantly smaller than the slow search trials in the 550-700 ms time window( t(17) 

=  3.43, p < .01). This general pattern is consistent with the view that on both types of trials there 

is initially a heavy reliance upon WM, but that if the target is found quickly these WM resources 

are released.      

WM capacity and CDA/Accuracy correlations

 WM capacity positively correlated with the CDA amplitude, r = .58, p < .05, and r = .60, 

p < .05 for both the easy and difficult search conditions, respectively (see Figure 5A and 5B). 

These relationships indicate that low WM individuals rely more on WM to preform the search 

task. Presumably, high WM capacity participants were able to efficiently localize the target and 

minimize their need for WM storage during search, while low WM capacity participants were 

less efficient in localizing the target and consequently held more (irrelevant) information from 

the search display in WM. The difference in search efficiency was also reflected in a correlation 

between WM capacity in the individual accuracy level in the difficult condition, r = .45, p = .059, 

indicating the high WM individuals were more accurate in finding the target.

15



Flanker correlations

 First, we analyzed whether the flanker affected search performance and whether this 

effect was dependent on the search difficulty. An analysis of variance (ANOVA) with the 

independent variables of Search (easy vs. difficult) and Compatibility (compatible, incompatible 

and no-flanker) and RT as a dependent variable yielded significant main effects of Search, 

F(1,17) = 95.59, MSE = 18,342.68, p < .001 and Compatibility, F(2,34) = 7.37, MSE = 810.56, p  

< .005. Importantly, the interaction between these variables was also significant, F(2,34) =  4.22, 

MSE = 787.87, p < .05 (confidence interval is 13 ms), indicating that the 21 ms flanker effect 

(incompatible vs compatible) was significant in the easy search condition, F(1,17) = 15.49, MSE 

= 243.335, p < .005 but was not significant in difficult search condition, F<1 (5 ms, see Figure 

6A). Thus, the flanker only affected behavior in the easy search condition. This pattern of results 

nicely replicate those of Lavie and Cox (1997).

 In terms of the CDA, when search was easy the amplitudes of the compatible and 

incompatible conditions were higher than the no-flanker condition (the CDA amplitude was -.20 

μv in the no-flanker condition, -.41 μv in the compatible condition and -.56 μv in the 

incompatible condition), a difference that was only marginally significant (F (1,17) = 3.26, MSE 

= .13,  p = .08, and F (1,17) = 3.62, MSE = 1.41,  p = .07, for the compatible and incompatible 

condition, respectively). Thus, the CDA analysis indicated that the flanker was stored in WM 

during the easy search condition. We then isolated the flanker representation by subtracting the 

CDA amplitude of the compatible and incompatible conditions from the CDA amplitude of the 

no-flanker conditions (i.e., CDA compatible - CDA no-flanker & CDA incompatible - CDA no-
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flanker) and correlated these difference values to the RT flanker effect (RT incompatible- RT 

compatible). We found a significant correlation between the compatible CDA difference (i.e., 

compatible - no flanker) and the flanker compatibility effect on search RT (RT incompatible- RT 

compatible), r = -.51 p < .05 (see Figure 6B). Thus, individuals who showed an increased CDA 

on compatible trials relative to no-flanker trials, also showed large flanker compatibility effects 

on search performance and vice-versa. Such a relationship helps to demonstrate that the identity 

of information (i.e., the flanker) that was represented in WM affected visual search behavior. 

Surprisingly, no significant correlations were found between the flanker compatibility effect on 

RT and the incompatible CDA difference (r = . -15 , p = .56). Previous evidence has suggested 

that the incompatible flanker condition primarily correlates with response related activity, which 

is at a later processing stage than WM (Gratton, Coles, Sirevagg, Eriksen & Donchin, 1988; 

Gratton, Coles & Donchin, 1992). Furthermore, in the difficult search condition, no significant 

correlations were observed for either compatible (r = -.24, p = .32) and incompatible difference 

waves (r = -.01, p = .96). The lack of correlations under the difficult search condition is to be 

expected because the behavioral data did not show a significant flanker compatibility effect. 

Experiment 3

Behavioral Results

 RT was 120 ms faster in the easy “pop-out” condition relative to the medium search 

condition (658 and 758 ms for the easy and medium search conditions, respectively), F(1,17) = 

89.38, MSE =4,371.06 , p < .001 (confidence interval is 32 ms), indicating that finding the target 

was indeed more difficult in the medium visual search condition.
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Electrophysiological Results

 Mean CDA amplitude in a time window of 350 to 600 post search array was taken as a 

dependent variable. WM was engaged in the medium search condition to a greater extent relative 

to the easy condition, F(1,17) =  12.34, MSE = .33, p < .001, as indicated by a higher CDA mean 

amplitude in the medium search condition (-1.11 μv) relative to the easy search condition (-0.44 

μv, see Figure 7). 

WM capacity and CDA/Accuracy correlations

 In both the easy and medium search conditions, WM capacity significantly correlated 

with the CDA amplitude, r = .43, p =.07 and r = .55, p< .05 for the easy and the medium 

searches, respectively (see Figure 8A and 8B). Thus, regardless of the search difficulty, high WM 

capacity participants relied less on WM during the search than did the low capacity participants. 

Presumably, high WM individuals were more efficient in locating the target while low capacity 

individuals also encoded irrelevant distractor items, as was also reflected by a correlation 

between WM capacity and accuracy in the medium condition, p = .61, p < .05, indicating that 

high WM individuals were more accurate in finding the target.   

Flanker correlations

 First, we analyzed whether the flanker affected the search performance and whether this 

effect was dependent on the search difficulty. An ANOVA with the same variables as in 

Experiment 2, yielded significant main effects of Search, F(1,17) = 89.38, MSE =4,371.06 , p < .
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001 and Compatibility, F(2,34) = 9.48, MSE = 451.10, p < .001. Importantly, the interaction 

between these variable was also significant, F(2,34) =  3.41, MSE = 283.68, p < .05 (confidence 

interval is 8 ms), indicating that the 12 ms flanker effect (incompatible vs compatible) was 

significant in the easy search condition, F(1,17) = 10.24, MSE = 125.48, p < .01 but was not 

significant  in medium search condition, F<1 (-3 ms, see Figure 9A). Thus, we only found 

evidence that the flanker affected behavior in the easy search condition, replicating the results of 

Experiment 2.

 In terms of the CDA, when the search was easy the amplitudes of the compatible and 

incompatible conditions were both higher than the no-flanker condition (the CDA amplitude was 

-.35 μv in the no-flanker condition, -.45 μv in the compatible condition and -.52 μv in the 

incompatible condition), a difference that was only marginally significant for the incompatible 

condition, but was not-significant in the compatible condition (F (1,17) = 1.82, MSE = .03,  p = .

19, and F (1,17) = 3.52, MSE =.06,  p = .07, for the compatible and incompatible condition, 

respectively). We then isolated the flanker representation in WM by subtracting the CDA 

amplitude of the compatible and incompatible conditions from the CDA amplitude of the no-

flanker conditions (e.g., CDA compatible - CDA no-flanker & CDA incompatible - CDA no-

flanker) and correlated this difference to the RT flanker effect (RT incompatible- RT compatible). 

As observed in Experiment 2, there was a significant correlation between the compatible CDA 

difference wave and the flanker compatibility effect on RT, r = -.59 p < .05. Thus, a larger 

(negative) CDA difference between the compatible and no-flanker condition was associated with 

a larger flanker effect (see Figure 9B). Therefore, even though the flanker effect did not reach a 

significant level in the group-level CDA analysis, the subjects that did represent the flanker in 
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WM also showed a respective large compatibility effect on search RT. Again, no significant 

correlations were found between the flanker RT effect size and the CDA difference for the 

incompatible condition (r = -  .03 , p = .88) or in the medium search condition, for both 

compatible (r = -.37, p = .12) and incompatible difference waves (r = -.38, p = .11). 

Analyzing the N2pc

 Please note that just prior to the CDA, in all 3 experiments we can observe an earlier 

component named the N2pc. The N2pc is believed to reflect spatial attention, and since it was 

affected by our manipulations we analyzed the N2pc (time range 200-250 ms relative to the 

memory array) in each experiment. 

  In Experiment 1, the N2pc was significantly different between the cued and the neutral 

(“all positions”) conditions, t(17) = 2.66, p<.05. However, unlike the CDA, the the difference 

between the cued and the neutral conditions did not correlate with the corresponding RT 

difference, r = .001, p>.9, nor did this N2pc difference correlate with WM capacity (even after 

partialling out the initial N2pc amplitude), r = -.02, p>.9.

 In Experiment 2, the N2pc amplitude was significantly different between the easy and the 

difficult search conditions, t(17) = 5.54, p<.005. However, The N2pc amplitude did not correlate 

with WM capacity in the easy condition, r = .007, p>.9, and in the difficult condition, r = .13 p>.

13. In order to rule out the lack of reliability as a reason for these low correlations, we correlated 

the N2pc amplitude between the difficult the easy conditions. This time, the correlation was high 

and significant, r =.78, p<.0005, ruling out reliability as the reason for the low correlations with 

WM.
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  In Experiment 3, the N2pc amplitude was significantly different between the easy and 

the medium search conditions, t(17) = 5.54, p<.005. However, The N2pc amplitude did not 

correlate with WM capacity in the easy condition, r = .28, p>.24, and in the medium condition, r 

= .36 p>.14. In order to rule out the lack of reliability as a reason for these low correlations, we 

correlated the N2pc amplitude between the medium and the easy conditions. This time, the 

correlation was high and significant, r =.92, p<.0005.

 These results are in line with previous studies that have already found dissociations 

between the CDA and the N2pc (e..g, Jolicoeur, Brisson, & Robitaille, 2008; McCollough et al., 

2008; Perron et al., 2009) and support the notion that the CDA and N2pc reflect different mental 

processes. 

Establishing a general link between WM and the visual search task 

 In this final section of the results, we aimed at further summarizing the link between the 

reliance on WM and the demands of the visual search task. This is important, considering that 

previous studies did not find any substantial link between individual differences in WM capacity 

and visual search performance (Kane, et al., 2006; Sobel, et al., 2007; Poole & Kane, 2009). To 

this end, we analyzed the easy, medium and difficult search conditions (taken from Experiments 

2 and 3) both in terms of RT and CDA. The results are presented in Figure 10. As expected, RT 

increased as search became more difficult, F (2,51) = 21.52, MSE = 14851.08. p < .0001. 

Importantly, the CDA followed the same pattern, F (2,51) = 9.02, MSE = .66. p < .0005, 

indicating that as the search became increasingly difficult there was an increasing involvement of 
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WM. This pattern of results is critical in establishing a strong link between the demands of the 

visual search task and WM representations. 

General Discussion

 The current pattern of results supports a tight connection between WM and visual search. 

First, as the search task became increasingly difficult (as indicated by slower RTs), the reliance 

upon WM was also increased (as indicated by larger CDA amplitudes). This means that, in 

general, as the search became harder, participants tended to rely more on WM in order to 

complete the search process and find the target. This increased reliance on WM likely reflects the 

temporary storage of distractors from the search display as the subject progresses towards 

finding the target. Thus, this basic pattern of results is highly consistent with the predictions 

made by the classes of visual search models that presume a critical role for WM during the 

search process itself (Bundesen, 1990; Desimone & Duncan, 1995; Duncan & Humphreys, 

1989).    

 At a more specific level, the present results identify under which conditions individual 

differences in visual WM capacity become an important regulator of visual search performance. 

In Experiment 2 and 3, WM involvement in the search task (as indicated by the CDA) correlated 

with WM capacity over and above any search difficulty (i.e., in the easy medium and difficult 

search conditions). Experiment 1 showed that mainly high WM capacity individuals were likely 

to effectively use the cue in order to benefit their search performance. Thus, in a single paradigm, 
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we provided evidence that performance in the visual search task is affected by both a task 

property (i.e., search difficulty) and a task-independent mechanism (individual differences in 

WM capacity). Moreover, it seems that at least under the present conditions, search difficulty and 

WM capacity did not seem to interact, because WM capacity correlated (roughly to the same 

extent) with search performance in the easy, medium and difficult search condition. 

 We propose that the reason why WM is involved in visual search especially when the 

search becomes difficult is because WM plays an important role in filtering irrelevant 

information (Awh & Vogel, 2008; Fukuda & Vogel, 2009; Vogel, McCollough & Machizawa, 

2005). Rejecting irrelevant distractors based on their identity becomes more demanding as the 

search becomes more difficult. Namely, in the easy search condition it is easier to reject 

distractors and lock on the target, resulting in less information that is represented in WM, and 

thus low CDA amplitude. However, when the search becomes more difficult, filtering irrelevant 

information is less efficient, so that more items end up in WM, resulting in a high CDA 

amplitude. Further corroborating this argument is the finding that fast trials show a faster drop in 

the CDA amplitude than slow trials. Presumably, after finding the target there is no longer a need 

to hold any information from the search display in WM. The same general idea explains why 

high WM individuals rely less on WM in order to perform the search process, but low WM 

capacity individuals tend to rely more on WM during the search. This is likely because high WM 

individuals are very efficient in rejecting distractors and locking on the target, while low capacity 

individuals are less efficient at disengaging attention from distractors and consequently maintain 

more irrelevant information in WM during the search (see e.g., Fukuda & Vogel, in press). This 

argument was supported by the correlations between WM capacity and accuracy in Experiments 
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2 and 3, demonstrating the high capacity individuals were more accurate in finding the target 

than low capacity individuals in the medium and difficult search conditions. 

 The results of Experiment 1 are consistent with our claim that the search difficulty 

dictates the extent of WM involvement. When the target position was not cued in advance, the 

search process that is supposed to select only the target, also ended up transferring irrelevant 

distractors into visual WM. Minimizing the search process by cuing the target’s position in 

advance resulted in faster search performance and less reliance on WM, presumably because 

only the target was represented in WM. 

 Experiment 2 and 3 replicated the behavioral effects predicted by perceptual load theory 

(Lavie, 2000; Lavie, Hirst, De Fockert & Viding, 2004). Namely, the flanker distractor was 

filtered out of processing only in the difficult and medium search (high perceptual load) 

conditions, so that the flanker effect was significant only in the easy search condition. However, 

it seems that participants were able to filter out the distractors around the target only in the easy 

search conditions but not in the medium and difficult search conditions (as indicated by the low 

CDA amplitude during easy search and the comparably high CDA amplitudes in the medium and 

difficult search conditions). Thus, there seems to be a dissociation in how the search process 

treats the distractors that are around the target, that must be excluded based on their identity, and 

flanker stimuli, that may be filtered on the basis of location.   

 The correlation between WM capacity and visual search that were found in all of the 

experiments are interesting in light of previous studies that tried and failed at finding any 

substantial relation between individual differences in WM capacity and visual search 

performance. For example, Kane et al., (2006) found no correlations between search efficiency 
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and WM capacity in both easy and difficult search conditions. Sobel et al., (2007) did find a 

correlation between search efficiency and WM capacity, but only when a habitual response had 

to be overcome, so it is not clear if this relation is a result of search efficiency per se or due to the 

fact that a habitual response had to be inhibited. Recently, Woodman and Arita (in press) have 

provided evidence that in a visual search task in which the target identity changed randomly on 

every trial, WM stored the target template just prior to the search, thus bridging some of the gap 

between human and primate studies (Miller & Desimone, 1993; 1994). Inline with this recent 

work, the current study consistently found a relationship between WM and visual search as 

predicted by several models of WM and attention (Cowan, 2001; Desimone & Duncan, 1995; 

Kane & Engle, 2002). Note that these prior studies that did not find a clear relationship used 

verbal WM measures (i.e., the OSPAN task) that were not specific (and perhaps less sensitive) to 

visual WM aspects. Moreover, those studies relied exclusively on behavioral measures of search 

performance, whereas we examined an online neural measure of online WM storage. 

 Another difference between the current and previous studies is that we only flashed the 

visual array for a limited time, while in former studies the visual array remained on the screen 

until the response. Historically, visual search was studied using both unlimited presentation time 

(and thus measuring reaction times as a dependent variable) and limited presentation time (e.g., 

Duncan & Humphreys (1989) and thus concentration on accuracy). The two methods yielded 

comparable behavioral results, in terms of the search difficulty affecting the set-size slope. 

Nevertheless, using limited presentation time might change the subject’s strategy, so that storing 

items in working memory becomes more probable only when the array disappears, and only 

when subjects cannot easily find the target (i.e., in the medium and difficult search conditions). 
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However, please note that the CDA is apparent even when the array is displayed for an unlimited 

period of time (e.g, see Drew & Vogel, 2008; for a CDA in multiple object tracking and Emrich 

et al., 2009; for a CDA in visual search task with unlimited presentation time), so that the 

relatively quick offset of the display cannot be the only reason why the CDA emerges. Moreover, 

a careful look at our data also argues against this offset type of interpretation. Namely, if WM is 

not needed when the target can be easily found (such as in the pop-out condition), the same 

should be true for the trials in which the target was quickly found in the difficult condition. 

However, our results from the difficult search condition, clearly show that even when the target 

was found relatively fast (average RT for the 25 percentile was 781 ms), WM was initially 

involved to the same degree relative to instances when the target was found relatively slow. That 

is, the slow and fast trials only differed in the onset of the decrease in the CDA but not in the 

initial involvement of WM. Moreover, the fast RT in the difficult condition was roughly similar 

to the RT in the easy search condition (781 vs. 763 ms for the difficult and easy conditions, 

respectively), but despite similar RTs, the easy search condition showed very little involvement 

of WM during the search process. Future research may further investigate this question by letting 

the stimuli stay on the screen until the response. 

 The current results also shed new light on the ongoing debate between early and late 

selection. We can identify early selection as being more efficient in information filtering, because 

capacity is allocated only (or mostly) to the relevant items, while late selection might 

inefficiently process task irrelevant items. Our data show that early and late selection are 

somewhat flexible mechanisms (see Vogel et al., 2005), and that under the same conditions some 

individuals used more of a late selection approach, while others were better able to take 
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advantage of early selection processes. Namely, the specific locus of filtering (early vs. late) was 

dependent upon the individual WM capacity, so that even when the search was easy, and the 

overall performance indicated early selection (i.e., efficient filtering), some individuals (with low 

WM capacity) used a more late selection mode of processing. When the search task was difficult, 

and the general performance indicated late selection (i.e., inefficient filtering), still some 

individuals (with high WM capacity) were able to use relatively more early selection mode of  

processing by efficiently blocking irrelevant items from reaching visual WM.    

 The neural substrates underlying visual search are beginning to be elucidated, and are 

thought to rely primarily upon interactions between prefrontal cortical structures and posterior 

parietal cortex (Bushman & Miller, 2007; Woodman, Kang, Rossi & Schall, 2007). These neural 

mechanisms are consistent with recent work by McNab and Klingberg (2008) who have found 

that filtering of irrelevant information was dependent upon activity in the basal ganglia and 

prefrontal cortex. This in turn, is consistent with the broad view that visual search mechanisms 

depend upon working memory structures. 
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Figure Captions

Figure 1: 1A. The experiment procedure used in Experiment 1. In the actual experiment we used 

green and red colors, that are represented in the figure using shades of gray. 1B. The various 

search conditions used across experiments. Subjects had to identify whether the letter “Z” or “X” 

was present in the imaginary circle array (and ignore anything outside the circle. Only the red or 

the green side was attended.  

Figure 2. Results for Experiment 1. Panel A- The CDA for the neutral (all positions cued) and the 

target cued conditions, time locked to the stimulus array. The gray bar above the x-axis indicates 

the stimuli presentation time. Panel B- correlation between the (CDA neutral - CDA target cued) 

and (RT neutral- RT target cued).

Figure 3. Results for Experiment 2. The CDA time-locked to the onset of the stimulus array in 

the easy and difficult search conditions for the OL/OR electrode. The gray bar above the x-axis 

indicates the stimuli presentation time for the difficult condition. The gray bar below the x-axis 

indicates the stimuli presentation time for the easy search condition. 

Figure 4: The CDA amplitude for fast and slow trials in the difficult search conditions in 

Experiment 2.  The gray bar above the x-axis indicates the stimuli presentation time
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Figure 5. Panel A- correlation between the CDA in the easy search condition and working 

memory capacity in Experiment 2. Panel B- correlation between the CDA in the difficult search 

condition  and working memory capacity in Experiment 2. 

Figure 6. Panel A- reaction time (RT) in the easy and difficult search conditions, for the flanker 

incongruent, congruent and neutral trials in Experiment 2. Error bars represent confidence 

intervals. Panel B- correlation between (CDA compatible- CDA neutral) and the flanker effect in 

Experiment 2. 

Figure 7. Results for Experiment 3. The CDA time-locked to the onset of the stimulus array in 

the easy and difficult search conditions for the OL/OR electrode. The gray bar above the x-axis 

indicates the stimuli presentation time.

Figure 8. Panel A- correlation between the CDA in the easy search condition and working 

memory capacity in Experiment 3. Panel B- correlation between the CDA in the medium search 

condition  and working memory capacity in Experiment 3. 

Figure 9. Panel A- reaction time (RT) in the easy and difficult search conditions, for the flanker 

incongruent, congruent and neutral trials in Experiment 3. Error bars represent confidence 

intervals. Panel B- correlation between (CDA compatible- CDA neutral) and the flanker effect in 

Experiment 3. 
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Figure 10: Combined Results for Experiment 2 and 3 for easy medium and difficult search 

conditions. Bar graph (left y-axis)- RT data. Line graph (right y-axis)- CDA amplitude. Error 

bars represent confidence intervals.
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