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SUMMARY
Human brains share a broadly similar functional organization with consequential individual variation. This
duality in brain function has primarily been observed when using techniques that consider the spatial orga-
nization of the brain, such as MRI. Here, we ask whether these common and unique signals of cognition are
also present in temporally sensitive but spatially insensitive neural signals. To address this question, we
compiled electroencephalogram (EEG) data from individuals of both sexes while they performed multiple
workingmemory tasks at two different data-collection sites (n = 171 and 165). Results revealed that trial-aver-
aged EEG activity exhibited inter-electrode correlations that were stable within individuals and unique across
individuals. Furthermore, models based on these inter-electrode correlations generalized across datasets to
predict participants’ working memory capacity and general fluid intelligence. Thus, inter-electrode correla-
tion patterns measured with EEG provide a signature of working memory and fluid intelligence in humans
and a new framework for characterizing individual differences in cognitive abilities.
INTRODUCTION

Human brains share a common template of functional organiza-

tion. Nearly every person, for example, shows a retinotopic map

in primary visual cortex1 and a face-sensitive region in inferior

temporal cortex.2 Electroencephalogram (EEG) activity signa-

tures of the number of items in working memory are reliable

enough to be detected at the single-subject level.3 Even in the

absence of an explicit task, individuals show synchronous activ-

ity in a stereotyped set of brain networks, such as the default

mode4 and frontoparietal5 networks.

Atop this shared organizational template is significant individ-

ual idiosyncrasy in brain structure and function.6 For example,

fMRI studies have revealed that each person has a unique

pattern of functional connectivity, or correlated activity between

spatially distinct brain regions, that distinguishes them from

others and remains stable across cognitive states.7–9 Further-

more, these unique functional connectivity patterns appear

cognitively meaningful, predicting individual differences in be-

haviors including fluid intelligence7,10 and attention.11–14

Brain-based predictive models rely on this interesting duality

in brain function: broadly similar organization with consequential

individual variation. That is, a neural system common across in-

dividuals is necessary to build brain-based biomarkers because,

if every individual relied on a different neural system to achieve a

particular behavior, predictive models would fail to generalize

across people. However, systematic idiosyncrasies in common

neural systems are what allow models to predict each person’s
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unique set of cognitive abilities. Without these differences, pre-

dictive models would fail to differentiate individuals. This duality

in brain function has primarily been observed when using tech-

niques, such as MRI, that consider the spatial organization of

the brain. In the current work, we seek to address the open theo-

retical question of whether these common and unique signals of

cognition are also present in temporally sensitive but spatially

insensitive neural signals, such as EEG.

Work in cognitive and network neuroscience has argued that

cognition relies on coordinated activity in large-scale, high-den-

sity brain networks.11–16 This may suggest that high-density,

spatially resolved neural signals, such as those measured with

fMRI, are uniquely informative of behavior. At the same time,

studies relating cognitive abilities to EEG and magnetoencepha-

lography (MEG) provide evidence that cognitively meaningful

variability in brain function may be sampled using spatially

sparse, high-frequency neural signals.17–22 In this paper, we

directly test the hypothesis that dense functional networks are

uniquely informative of behavior. To do so, we ask whether in-

ter-electrode correlations measured using EEG can (1) identify

individuals and (2) predict trait-like cognitive abilities across indi-

viduals from completely independent datasets. Although these

inter-electrode correlation patterns, based on trial-averaged

EEG signals, likely capture different aspects of brain activity

than do functional connectivity patterns measured with fMRI,

theymay nonetheless be stable within individuals, unique across

individuals, and robustly predictive of trait-like aspects of

behavior.
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Figure 1. Visual depiction of our analysis

pipeline

(A) First, we calculated ERP time courses for

each electrode by averaging data across all tri-

als. Here, we have depicted two trial-averaged

ERP time courses from an example participant

(participant no. 1). Then, we correlated these

trial-averaged ERP time courses across all

pairwise electrodes. For example, we correlated

the green and blue lines. Correlating all pairwise

electrodes for each individual and task resulted

in one inter-electrode correlation matrix for each

participant and task, which represents the rela-

tionship over time of each electrode with every

other electrode. For the EEG fingerprinting ana-

lyses, we compared each individual’s inter-

electrode correlation matrix across tasks. For

the behavioral prediction models, we averaged

each individual’s inter-electrode correlation ma-

trix across all tasks.

(B and C) For visual comparison, here we have

plotted the average inter-electrode correlation

matrices across all participants and tasks for the

Oregon-site and Chicago-site data separately.

As can be seen from these figures, the averaged

Oregon-site and Chicago-site inter-electrode

correlation matrices are very similar to each

other despite differences in EEG systems,

experimental designs, data collection sites, and

subject pools.
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In addition to open theoretical questions about brain function

and cognition, obstacles to widespread adoption of existing

brain-based models of behavior—the majority of which are

based on MRI data—remain. First, the majority of these models

have not tested the generalizability of their predictions to unseen

individuals and datasets.23 This limits our ability to draw conclu-

sions about their robustness and replicability.24 Second, work

has suggested that, in some cases, confounds such as head

motion can influence observed relationships between these

predictivemodels and behavior.25 Finally, the costs ofMRI for re-

searchers, clinicians, and participants have so far limited trans-

lation to real-world settings.

Here, we address these open theoretical questions and prac-

tical challenges by using a direct measure of neural activity that

is easy and affordable to implement: EEG. Across two EEG da-

tasets, each with 165+ individuals collected at different univer-

sities with different EEG systems (passive versus active), we

show that inter-electrode correlations between trial-evoked

event-related potentials (ERPs) are unique across individuals

and stable within individuals. We next demonstrate that models

based on these sparse inter-electrode correlations generalize

across individuals and independent datasets to predict individ-

ual differences in working memory capacity, a critical cognitive

ability. Finally, we show that the same set of inter-electrode

correlations that predicts working memory capacity predicts

general fluid intelligence in novel individuals. Thus, sparse

trial-evoked EEG correlation patterns reveal a signature of

trait-like cognitive abilities in humans and provide a new,

more affordable, and accessible approach for predicting cogni-

tive ability from brain function.
RESULTS

EEG fingerprinting
Are patterns of inter-electrode correlations unique across indi-

viduals? Many EEG analyses implicitly treat potential individual

differences as noise, averaging results across the group or

comparing average results from two groups (e.g., individuals

with high versus low working memory capacity; patients versus

controls). Here, we asked whether individuals have both stable

and unique trial-evoked patterns of inter-electrode correlations

that can reliably distinguish them from others. To test this possi-

bility, we applied a ‘‘fingerprinting’’ style analysis approach

developed using fMRI functional connectivity data7,9 to two inde-

pendent EEG datasets. Data were collected as participants

performed variants of a lateralized change detection task at

the University of Oregon (n = 171) and the University of Chicago

(n = 165; STAR Methods). Fingerprinting analyses were

restricted to individuals who participated in at least two separate

tasks at one of the sites (Oregon n = 171; Chicago n = 45).

For each participant and task, we calculated a whole-scalp in-

ter-electrode correlation pattern using the 17 electrodes that

overlapped between the two datasets. We correlated the trial-

averaged time courses (i.e., ERPs) between all pairs of these

17 electrodes for each task (Figure 1). We then correlated every

individual’s task A inter-electrode correlation pattern with all

possible taskB patterns and vice versa. Individuals were consid-

ered correctly identified when the correlation between their task

A and their task B patterns was larger than the correlation be-

tween their task A and all other task B patterns (and vice versa).

Identification accuracy is the number of correct identifications
Current Biology 31, 4998–5008, November 22, 2021 4999
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divided by twice the number of participants. Non-parametric sta-

tistical significance was determined with 10,000 permutation

tests (STAR Methods).

We ran an even stronger test of individual uniqueness by

comparing the effects of subject versus task. To this end, we

correlated each individual’s task A and task B inter-electrode

correlation patterns (‘‘across-task correlations’’) and all pairs of

individuals’ patterns for each task (‘‘within-task correlations’’).

If individuals look most like themselves, regardless of task

context, across-task correlations should be higher than within-

task correlations.

University of Oregon sample

Participants in the University of Oregon sample completed two

lateralized change detection tasks in which they were instructed

to remember items’ shape or color as part of a single study. EEG

fingerprinting analyses revealed that individuals had stable and

unique patterns inter-electrode of correlations across these

two tasks that could reliably dissociate them from other individ-

uals (color: shape task accuracy = 82%, p < 0.0001; shape: color

task accuracy = 81%, p < 0.0001 [chance = 1/171 or 0.58%]). In

other words, individuals’ patterns of inter-electrode correlations

were distinct from the group and stable across tasks. Further-

more, individuals’ patterns of inter-electrode correlations looked

most like themselves, regardless of task context (within-subject,

across-task average Spearman rank correlation = 0.98 ± 0.02;

across-subject, within-task average matrix correlation = 0.87 ±

0.09; p < 0.0001). Furthermore, these results were not driven

by differences in skull thickness (Laplacian transformed identifi-

cation of color:shape task accuracy = 77.78%, p < 0.001;

shape:color task accuracy = 80.12%, p < 0.001; chance = 1/

171 or 0.58%). This aligns with previous research that has found

that differences in brain activity contribute much more variance

to surface EEG than do variations in skull thickness.26

Are patterns of inter-electrode correlations unique in their abil-

ity to identify individuals or are trial-averaged amplitude patterns

stable and distinguishable across individuals as well? To

address this question, we repeated fingerprinting analyses using

trial-averaged amplitude at each electrode. Results revealed that

trial-evoked amplitude significantly identified individuals (color:

shape task accuracy = 51%, p < 0.0001; shape: color task accu-

racy = 51%, p < 0.0001 [chance = 1/171 or 0.58%]). However,

identification accuracy was lower than that achieved with pat-

terns of inter-electrode correlations (color: shape task accuracy=

82%, p < 0.0001; shape: color task accuracy = 81%, p < 0.0001).

University of Chicago sample

The University of Chicago sample included data from twelve ex-

periments collected as part of six independent studies. Data

from all studies were collected on different days in different ses-

sions. For this analysis, we only consider data from the subset of

individuals who participated in multiple experiments (STAR

Methods). Replicating results from the Oregon sample, individ-

uals in the Chicago dataset showed stable and unique patterns

of inter-electrode correlations, which could be used to reliably

distinguish them from other individuals (task A:B accuracy =

29%, p < 0.0001; taskB:A accuracy = 34%, p < 0.0001 [chance =

1/19 or 5.26%]). Additionally, individuals’ patterns of inter-elec-

trode correlations looked most like themselves, regardless of

task context (within-subject, across-task average Spearman

rank correlation = 0.90 ± 0.10; across-subject, within-task
5000 Current Biology 31, 4998–5008, November 22, 2021
average correlation = 0.85 ± 0.11; p < 0.0001). Once again, iden-

tification accuracy was not driven by differences in skull thick-

ness (Laplacian transformed identification of taskA:B accuracy =

37.62%, p < 0.001; task B:A accuracy = 36.00%, p < 0.001

[chance = 1/19 or 5.26%]). Although trial-evoked amplitude

significantly identified individuals (task A:B accuracy = 17%,

p < 0.0001; task B:A accuracy = 18%, p < 0.0001; chance =

1/19 or 5.26%), identification accuracy was lower than that

achieved with patterns of inter-electrode correlations.

In both the Chicago and Oregon datasets, we identified indi-

viduals based on their unique pattern of inter-electrode correla-

tions. These results suggest that individuals have unique and

robust inter-electrode correlation patterns that differentiate

them from others. These results also complement existing find-

ings in the literature that have, for example, used ERPs to identify

individuals.17,18,27 Our results provide further evidence that EEG-

based correlations can be used to identify individuals and can

generalize across tasks, sites, and EEG system.

To test whether individual differences in these patterns reflect

individual differences in cognitive abilities and behavior, we next

asked whether we could use these patterns to predict a central

cognitive ability: working memory capacity.

Predicting working memory: Within-site validation
To determine whether patterns of inter-electrode correlations

during lateralized change detection tasks predicted working

memory capacity in novel individuals, we trained and tested con-

nectome-based predictive models22,28 using balanced 5-fold

cross-validation. For each participant, we calculated working

memory capacity (K score) based on their change detection

task performance19,20 and a single inter-electrode correlation

pattern from all available task data. For all studies, we included

data from time points 0 (the onset of the memory array) to

1,000 ms (see STAR Methods for more details). In each cross-

validation fold, we identified the inter-electrode correlations

(‘‘features’’) significantly related to K score in the training set,

averaged the strength of these features for each participant,

and related mean feature-strength values to K scores with a

linear model (STAR Methods). We applied this model to predict

the left-out set of participants’ K scores based on the strength

of their inter-electrode correlations. To assess predictive power,

we calculated the Spearman correlation between observed and

predicted K scores. Correlation assesses the degree to which

model predictions capture participants’ rank-order K scores—

that is, whether models predict which participants had relatively

higher and lower working memory capacities. We calculated

mean square error (mse), which reflects the numeric accuracy

of predictions, as a complementary measure of model perfor-

mance. p values for rs and mse values were calculated using

permutation tests.

University of Oregon sample

Models based on inter-electrode correlations averaged across

the color and shape change detection tasks significantly

predicted novel individuals’ working memory capacity (mean

correlation between predicted and observed K score rs = 0.22,

p = 0.002; mse = 0.24, p < 0.0001; Figure 2). Control analyses

revealed that models based on EEG signal amplitude, rather

than inter-electrode correlations of amplitude, did not predict

capacity (rs = 0.02, p = 0.43; mse = 0.26, p = 0.80).



Figure 2. Within-site validation results

(A and B) Histogram of the correlation between

observed and predicted working memory capacity

(K) using 5-fold cross-validation over 10,000 true

model iterations (purple) and 10,000 null model

permutations (gray) for (A) the model trained within

the Oregon-site data and (B) the model trained

within the Chicago-site data. The vertical black

lines represent the iteration and fold with the mean

r value.

(C and D) Scatterplot of the correlation between

observed and predicted K scores from the iteration

and fold with the mean r value for (C) the model

trained within the Oregon-site data and (D) the

model trained within the Chicago-site data. Gray

dots represent individuals observed and predicted

K scores from 1-fold. The black line is the best fit

line.

Also see Figure S4.
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Training and testing models for the color and shape tasks

separately revealed that observed and predicted K scores

were significantly correlated in the shape task, but not the color

task: mean shape task (rs = 0.21, p = 0.006; mse = 0.34, p =

0.0004; mean color task, rs = 0.09, p = 0.12; mse = 0.23, p =

0.05).

We investigated whether models generalized across tasks by

applying models trained in the color task to shape task data

from held-out individuals and vice versa. Models trained on co-

lor task data significantly predicted K scores from shape-task

data (mean rs = 0.28, p = 0.0002; mse = 0.43, p < 0.0001).

Models trained on data from the shape task significantly predict

K scores from color-task data as evaluated by rs (mean rs =

0.25; p = 0.0007), but not as evaluated by mse (mean mse =

0.38; p = 0.07). Performance in the color and shape tasks

was highly correlated (r = 0.73; p = 2.60e�0.30; mse = 0.22).

However, the variability (color: variance = 0.23; shape: vari-

ance = 0.36) and reliability (color: reliability = 0.85; shape: reli-

ability = 0.77) of performance differed between the color and

shape tasks. Thus, it is possible that the shape task model

did not generalize to the color task because there was less

behavioral variance in the color task for the model to capture

during testing.

The above models were built using correlations of trial-aver-

aged ERPs from electrodes aligned based on the side of the

screen that participants attended on each trial, as described in

the Electrode organization section of the STAR Methods.

When electrodes were not aligned in this way, models did not

predict working memory capacity (mean rs = �0.04; p = 0.67,

mse = 0.27, p = 0.73). Similarly, models trained on correlation

patterns calculated from EEG data concatenated rather than

averaged across trials did not predict capacity (Figure S1).

Of note, the range of model predictions was condensed rela-

tive to the range of observed K scores. This is common in ma-

chine learning models and is an active area of research.21 One
Current Biolog
reason for this restriction of range is that

data in the tails of a distribution are less

well represented in the training data than

closer-to-average values. Restricted pre-
dicted ranges are also observed and discussed in work building

fMRI functional connectivity models.7,22

University of Chicago sample

For the Chicago dataset, we collapsed data across multiple lat-

eralized change detection experiments, which had different

memoranda and sample durations. Inter-electrode correlations

and K for each participant were measured using all the studies

that each participant completed. Replicating findings from the

Oregon sample, observed and predicted K scores were signifi-

cantly correlated (mean rs = 0.26, p < 0.0001; mse = 0.33, p =

0.002; Figure 2). Thus, inter-electrode correlations predicted

working memory capacity across individuals.

Predicting working memory: Across-site validation
Although these results provide the first evidence that models

based on EEG data predict working memory capacity across

individuals, there are many reasons that internal (i.e., within-

dataset) validation may overestimate effect sizes, including

idiosyncrasies in task context, EEG systems, and participant

populations. Therefore, an even more powerful demonstration

of the robustness of predictive models is to externally validate

them—that is, to apply them to data from a completely indepen-

dent sample. External validation allows us to better approximate

a model’s population-level generalizability and better under-

stand its predictive boundaries.

To test the cross-dataset generalizability of models predicting

working memory capacity, we trained models on the full Oregon

sample and applied them to the full Chicago sample and vice

versa. Importantly, these two datasets were collected by

different experimenters in different locations using different

EEG systems.

Predicting Chicago K scores from Oregon model

To generalize the Oregon working memorymodel to the Chicago

dataset, we trained a model using the Oregon dataset and

applied it, completely unchanged, to the Chicago sample.
y 31, 4998–5008, November 22, 2021 5001



Figure 3. Across-site validation results

(A) Scatterplot of the correlation of observed and

predicted working memory capacity (K) from a

model trained on all the Chicago data and tested

on all the Oregon data. Gray dots represent in-

dividuals observed and predicted K scores. The

black line is the best fit line.

(B) Scatterplot of the correlation of observed and

predicted working memory capacity (K) from a

model trained on all the Oregon data and tested on

all the Chicago data. Individual colored lines

represent the correlation between observed and

predicted working memory capacity of each

experiment plotted separately and demonstrate

that it is not the case that a small subset of ex-

periments drives these results. The black line

represents the fit of all individual participants.

(C) Predictive features (i.e., inter-electrode correla-

tions) that were included in the model trained on the

Oregon dataset. Features that positively predicted

working memory capacity are depicted in orange,

and those features that negatively predicted work-

ing memory capacity are depicted in blue.

(D) Predictive features that were included in the

model trained on the Chicago dataset.

Also see Figure S4.
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Predictions from this model were significantly correlated with

observed K scores, demonstrating that the model trained on

the Oregon dataset predicted working memory capacity in the

Chicago dataset (rs = 0.29, p < 0.0001; mse = 1.008, p =

0.0003; Figure 3). Cross-site prediction performance was robust

to variations in the feature-selection threshold applied during

model building. Thresholds ranging from the top 5% to the top

20% of features positively and negatively correlated with

behavior resulted in model performance values between r =

0.19 and 0.31, p < 0.01, and mse = 0.95 and 1.08, p < 0.0001.

We additionally investigated whether stimulus-evoked activity

drove our ability to predict working memory capacity across

sites. To do this, we re-calculated inter-electrode correlations

using data from stimulus offset to the end of the retention interval

(STAR Methods). We were still able to significantly predict work-

ing memory capacity in the Chicago dataset using a model

trained on the Oregon dataset (rs = 0.26, p = 0.0006; mse =

1.00, p = 0.002). Though stimulus-evoked activity does not

necessarily end at stimulus offset, these results provide some

initial evidence that our results are robust across various time

windows.

Predicting Oregon K scores from Chicago model

We next applied a model defined using Chicago data to predict

working memory in the Oregon sample. Predictions from this

model were significantly correlated with observed K scores

(rs = 0.30, p < 0.0001; mse = 0.92, p = 0.0002; Figure 3). Again,

cross-site prediction performance was robust to variations in

feature-selection threshold. Thresholds ranging from the top

5% to the top 20% of features positively and negatively corre-

lated with behavior resulted in model performance values
5002 Current Biology 31, 4998–5008, November 22, 2021
between r = 0.18 and 0.28, p < 0.02, and

mse = 0.95 and 1.08, p < 0.0001. Predic-

tions remained significant when calcu-
lating inter-electrode correlations from data collected after

memory array offset (mean rs = 0.23, p = 0.003; mse = 0.887,

p = 0.0003).

Across-site validation demonstrates that models predicting

working memory capacity not only generalized across EEG ses-

sion and stimuli but also across data acquisition sites (Oregon

versus Chicago) and EEG systems (passive versus active). This

suggests that inter-electrode correlations are a robust, repro-

ducible, and generalizable predictor of working memory

capacity.

Overlap of Oregon and Chicago models

Next, we askedwhether the two externally validatedmodels pre-

dicted working memory from a common set of inter-electrode

correlations. We found that indeed there was significant overlap

between the predictive features in the Chicago and Oregon

models: 6 overlapping features (26% of the features in both

models; 5 features negatively predicting behavior in both

samples and one feature positively predicting behavior in

both samples; p = 7.68e�7). This suggests that a common set

of inter-electrode correlations predicts working memory capac-

ity in both datasets.

The features that overlapped between the Oregon and

Chicago models involved posterior and occipital electrodes:

O1-O2, PO8-PO7, P7-P8, PO7-P8, P4-P3, and PO8-Pz. Most

of these correlations were between cross-hemisphere elec-

trodes, which could be due to the lateralized nature of this

task. The involvement of cross-hemisphere inter-electrode cor-

relations in these models emphasizes that both contralateral

and ipsilateral neural activity critically contribute to our ability

to predict behavior.
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Relationship to the CDA

Interestingly, predictive inter-electrode correlations in our

models include electrodes that are typically used to calculate

the contralateral delay activity (CDA). This large degree of

overlap between our models’ predictive feature set and CDA

electrodes raises some questions about whether our models

are independent from the CDA. To answer this question, we

ran the same prediction analyses as we did above using CDA

amplitude to predict working memory capacity. We calculated

the CDA by taking the difference in amplitude between contralat-

eral and ipsilateral posterior and occipital electrodes (P7/P8, P3/

P4, PO7/PO8, PO3/PO4, and O1/O2) from 0 to 1,000 ms (the

time range included in our analyses). We then trained a linear

model to predict working memory capacity from the CDA using

the full Oregon-site dataset and tested it on the full Chicago-

site dataset (and vice versa). The model trained on the Oregon-

site dataset did not significantly predict working memory

capacity (rs = 0.04, p = 0.29; mse = 1.24, p = 0.57). Surprisingly,

the model trained on the Chicago-site dataset negatively pre-

dicted working memory capacity (rs = �0.32, p < 0.0001;

mse = 0.98, p < 0.0001). This negative prediction is difficult to

interpret, especially because this model predicted K score

values that ranged from 2.50 to 2.52, values close to the mean

of the Chicago-site dataset (mean K = 2.50).

Past work has shown that CDA amplitude in the Oregon-

site dataset is significantly correlated with working memory

capacity.29 However, in the Chicago-site data, the correlation

between CDA amplitude and working memory capacity was

not significant (r = �0.04; p = 0.61). One possible reason for

the lack of a significant correlation in this dataset is that the set

sizes used to calculate K scores are smaller than set sizes typi-

cally used to observe this correlation. Smaller, variable set sizes

could affect estimates of working memory capacity and, thus,

the relationship between K scores and CDA amplitude. Never-

theless, the inter-electrode correlation approach seems to be

more sensitive than the CDA to the relationship between neural

activity and behavior because the inter-electrode correlation

approach was able to predict behavior in both datasets despite

being calculated using a more limited behavioral range in the

Chicago-site dataset.

To further investigate whether CDA explains unique variance

to inter-electrode correlations, we trained models to predict

working memory capacity from both CDA and inter-electrode

correlations combined. These models significantly predicted

behavior (train Oregon, test Chicago rs = 0.25, p < 0.0001,

mse = 1.33, p = 0.012; train Chicago, test Oregon rs = 0.27,

p < 0.0001, mse = 1.05, p < 0.0001). However, the CDA coeffi-

cient was only significant in the model trained on the Oregon

data (train Oregon CDA coefficient p = 0.02; train Chicago CDA

coefficient p = 0.61). These results provide further evidence

that our inter-electrode correlation models do not simply track

the CDA. Instead, they predict behavior from neural signals

that are distinct from the CDA.

EEG fingerprinting using predictive features

Are the inter-electrode correlation patterns that predict working

memory capacity across individuals reliable enough to distin-

guish individuals from a group? To ask this question, we applied

the same analysis described in the EEG fingerprinting section

above. However, instead of using the whole-scalp pattern of
inter-electrode correlations, we only included the inter-electrode

correlations that significantly predicted behavior across individ-

uals. This feature set only included those features that signifi-

cantly predicted behavior in both the Chicago and Oregon

models. We then compared the results from the predictive

feature set to those from the whole-scalp inter-electrode corre-

lation pattern.

University of Oregon sample

Features predicting working memory were sufficient to identify

individuals (color: shape task accuracy = 40%, p < 0.0001;

shape: color task accuracy = 39%, p < 0.0001 [chance =

1/171]). In other words, the inter-electrode correlations that pre-

dicted working memory capacity across individuals also reliably

distinguished individuals. However, identification accuracy us-

ing only predictive features was lower than when we included

the whole-scalp pattern. To determine whether this reduction

in identification accuracy was due to downsampling the number

of features, we compared identification accuracy of predictive

features to an equal number of randomly selected features that

were not predictive of working memory capacity. Identification

accuracy using a random subset of features also identified indi-

viduals (color: shape task accuracy = 39%, p < 0.0001; shape:

color task accuracy = 33%, p < 0.0001 [chance = 1/171]). There

was not a significant difference between identification accuracy

using the predictive features and the random features (color:

shape p < 0.167; shape: color p < 0.272). These results suggest

that inter-electrode correlations that significantly predict working

memory capacity are not necessarily better at identifying individ-

uals than a random subset of inter-electrode correlations.

University of Chicago sample

Replicating results from the Oregon sample, identification accu-

racy using only predictive featureswas successful (taskA:B accu-

racy = 26%, p < 0.0001; task B:A accuracy = 23%, p < 0.0001

[chance = 1/19]). Once again, this identification accuracy was

worse than that achieved with whole-scalp inter-electrode

correlation patterns, and random same-size feature sets also

identified individuals (task A:B accuracy = 13%, p < 0.0001; B:A

accuracy = 13%, p < 0.0001 [chance = 1/19]). Unlike in the Ore-

gon dataset, however, predictive features more accurately identi-

fied individuals than the random features (task A:B, p < 0.0001;

task B:A, p < 0.0001). These results suggest that features that

significantly predict working memory capacity may more accu-

rately identify individuals than a random subset of features. Given

the inconsistency of this result across the Chicago and Oregon

samples, further research is needed to characterize whether an

individual’s most identifiable inter-electrode correlation features

are the same features that best predict their behavior.

Relationship between inter-electrode correlations and
general fluid intelligence
Our results demonstrate that patterns of inter-electrode correla-

tions observed during a working memory task are a robust and

reliable predictor of working memory capacity. Do patterns of in-

ter-electrode correlations observed in this context predict other

cognitive abilities, such as general fluid intelligence? In the

Oregon dataset, participants performed a series of cognitive

tasks outside the EEG booth, including three measures that al-

lowed us to calculate general fluid intelligence (STAR Methods).

Therefore, we used this dataset to investigate the relationship
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Figure 4. Prediction of general fluid intelligence

(A) Histogram of the correlation between observed and predicted general fluid

intelligence (gF) using 5-fold cross-validation over 10,000 true model iterations

(purple) and 10,000 null model permutations (gray). The vertical black line

represents the iteration and fold with the mean r value. Models were trained

and tested within the Oregon dataset using the predictive working memory

features that were included in both the Oregon and Chicago working memory

models.

(B) Scatterplot of the correlation between observed gF and predicted gF from

the iteration and fold with themean r and p values. Of note, these data are from

an example fold and iteration. In some folds, the numeric outlier in this figure

was not included in the data. Gray dots represent individuals observed and

predicted gF. The black line is the best fit line.
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between patterns of inter-electrode correlations and general

fluid intelligence. We also investigated the relationship between

predicted working memory capacity from our models and all

other behavioral measures from the Oregon dataset (STAR

Methods).

Predicting fluid intelligence

Although we have shown that the patterns of inter-electrode cor-

relations are a robust predictor of workingmemory capacity, one
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concern is that these correlations are not predicting working

memory per se but instead some other aspect of function that

could support performance in the working memory task. For

instance, inter-electrode correlations might reflect the degree

of response bias in an individual, which could in turn have an

impact on change detection performance. To address this

possibility, we tested whether inter-electrode correlations that

predict working memory capacity also predict general fluid intel-

ligence (gF), a closely related ability.30–32 If we can predict gF

based on our EEG-basedmodels, this would provide converging

evidence that inter-electrode correlations are predicting a purer

working memory capacity construct because that which is pre-

dicted is shared with a very different task that is known to rely

on working memory.

To this end, for each participant in the Oregon sample, we

calculated gF scores from a combination of performance on

three tasks: Raven’s advanced progressive matrices, number

series, and Cattell’s culture fair test, as reported in previous

work.29 We also calculated mean strength of the inter-electrode

correlations that predicted working memory in the Chicago sam-

ple. Using 5-fold cross-validation, we trained and tested models

predicting gF from these values. Models significantly predicted

novel individuals’ gF scores (rs = 0.19, p = 0.02; mse = 6.79,

p = 0.002; Figure 4). These results suggest that inter-electrode

correlation patterns tap into the same aspects of working mem-

ory capacity that are critical for fluid intelligence, alleviating con-

cerns that EEG models were instead tapping into some other

idiosyncratic factor influencing performance on the change

detection task used to measure working memory ability in our

study. Although the EEG data used here were collected as par-

ticipants performed a working memory task, our EEG models

generalized to predict fluid intelligence (STAR Methods).

DISCUSSION

Here, we demonstrate that inter-electrode correlations

measured using EEG are idiosyncratic to each person and can

be used to identify individuals from a group. These correlation

patterns are unique and stable over time, just like a fingerprint.

Furthermore, individual differences in these patterns are cogni-

tively meaningful, predicting general fluid intelligence across

individuals and working memory capacity across independent

datasets. Together, these results demonstrate that individual dif-

ferences in critical cognitive abilities are reflected in individuals’

unique, idiosyncratic expression of ERP correlation patterns.

Furthermore, patterns of inter-electrode correlations are a

generalizable and accessible approach for predicting individual

differences in other abilities and behaviors from brain data.

Predicting trait-like behavior
Previous research has used EEG to track moment-to-moment

fluctuations in working memory storage. For example, multivar-

iate pattern classification techniques have used the topography

of rawEEG amplitude to decode the amount of informationmain-

tained in working memory on a single trial.33 Another EEG signal,

the CDA, scales with the number of items held in working mem-

ory. This signal’s amplitude asymptotes when working memory

is full and is correlated with working memory capacity.29 Previ-

ous research has also found that ERP components, including
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the P200, N200, and P300, are strongly associated with general

fluid intelligence.34 Thus, the presence of EEG signals that track

working memory storage, capacity, and intelligence is well

established. However, no previous work has generalized their

working memory capacity and general fluid intelligence models

across completely independent individuals from different data-

sets using direct measures of brain function, including EEG.

Brain-based models of behavior are most theoretically infor-

mative and practically useful when they generalize to novel

data. However, there aremany reasons why brain-basedmodels

might not generalize. For example, internally validated model

results could be driven by similarities between people at a partic-

ular site or idiosyncrasies of a particular task design or experi-

mental context. Testing models on independent datasets (i.e.,

external validation) is a powerful way to reduce these and other

biases.23,24 Although significant work has emphasized the

importance of external validation,24 it is still relatively uncom-

mon.23 In fact, one paper found that only 9%of the neuroscience

studies that they surveyed tested models on one or more inde-

pendent datasets.23 Additionally, none of these studies analyzed

EEG data. Here, we externally validated our EEG-based predic-

tive models. We illustrate that our results are robust to differ-

ences in task design, experimental context, EEG system, and

participant population. By externally validating our results, we

provide a powerful demonstration that our models of working

memory are both robust and generalizable.

Interestingly, we were able to predict general fluid intelligence

using the same EEG features that predicted working memory

capacity. This suggests that the variance in working memory ca-

pacity that our predictive model explains is shared with general

fluid intelligence. With our supplemental cross-correlation anal-

ysis, we also found that the relationship between predicted

working memory capacity and other cognitive abilities was anal-

ogous to the relationship between observed working memory

capacity and other cognitive abilities. This is another example

of how our model predictions capture variance in working mem-

ory that is shared with related cognitive abilities. Overall, the

EEG-based model that we identified is not idiosyncratic to a

particular working memory task. Rather, it seems to track trait-

like cognitive abilities, including general fluid intelligence, more

generally.

Sparse cognitive networks
Previous work in cognitive and network neuroscience has sug-

gested that cognitive abilities, such as working memory and

attention, emerge from interactions between dozens or

hundreds of brain regions in complex, large-scale brain

networks.11–14,28 Significant research, typically using fMRI,

has utilized these networks to describe and predict

behavior.14,7,22,35–37 Interestingly, using EEG, we were able to

predict working memory capacity from fewer than 15 inter-elec-

trode correlations and fluid intelligence from only 6 correlations

between occipital and parietal electrodes. Thus, although cogni-

tive abilities may involve the interaction between large numbers

of disparate brain regions, they can also be summarized using a

relatively sparse EEG ‘‘network.’’ Future work can investigate

whether this sparse EEG network and more spatially specific

measures of cognition explain unique or overlapping variance

in cognitive abilities.
The predictive network that overlapped between the Oregon

and Chicagomodels involved posterior and occipital electrodes.

Considering previous work that has found robust associations

between frontoparietal brain regions and working memory, it

may be surprising that our working memory models do not

include correlations between frontal electrodes as features.

However, the lack of frontal electrode correlations in our models

does not necessarily suggest a lack of involvement of frontopar-

ietal regions in working memory processes. EEG’s lack of spatial

specificity makes it very difficult, if not impossible, to localize

where the signal that we are measuring was generated. Thus,

it is possible that the activity in posterior electrodes that pre-

dicted working memory capacity reflected contributions from

anterior brain regions that have previously been shown to be

involved in workingmemory. Furthermore, there aremany robust

EEG signals that track working memory that are measured in

posterior electrodes. For example, the CDA—which is measured

using posterior-occipital electrodes—scales with working mem-

ory load and tracks individual differences in working memory ca-

pacity.3 The distractor positivity (PD) tracks suppression of items

fromworkingmemory and is alsomeasured using posterior elec-

trodes.38 Considering these and other posterior EEG signals that

track working memory processes, the lack of frontal electrode

correlations in our models is potentially less surprising.

Tracking brain function
Our results suggest that common and unique signals of cognition

are present in temporally precise but spatially insensitive EEG

signals. This suggests that millisecond-by-millisecond fluctua-

tions in neural processing are unique across individuals and

cognitively meaningful. Previous work has also shown that anal-

ogous spatially sensitive signals are present in fMRI signals,

including functional connectivity networks. These two methods

track different neural signals. But, when considered together,

they provide additional evidence that methods that measure sta-

tistical dependence between two regions’ signal time series, in

general, track meaningful variation in brain function.

Despite the robustness of our EEG- and previous fMRI-based

fingerprinting results and predictivemodels, there are certain ob-

stacles that need to be addressed beforewe can fully accept that

these methods track brain function. For example, previous work

using fMRI functional connectivity has been criticized because it

measures blood oxygenation, which is an indirect measure of

neural activity. Due to this, critics have suggested that fMRI func-

tional connectivity fingerprinting could be driven by individual

differences in brain structure or vasculature, rather than mean-

ingful differences in brain function.39,40 They additionally suggest

that identification and behavioral prediction could be driven by

trait-like head motion, which is a challenging confound in

fMRI.25,41,42 Our EEG models complement this work by control-

ling for and ruling out these potential confounds.

EEG—like MRI and all other measures of human brain activ-

ity—is also influenced by brain structure. Unlike MRI, however,

patterns of inter-electrode correlations in the current work mea-

sure the topography of electrical brain activity, which is a direct

measure of neural activity. EEG is also less influenced by head

motion because EEG trials are typically shorter, and trials with

interference from head motion are removed from analyses.

Therefore, these factors do not influence our ability to identify
Current Biology 31, 4998–5008, November 22, 2021 5005



ll
Article
individuals and predict behavior using inter-electrode correla-

tions. Nevertheless, our EEG analyses come with their own

unique challenges. For example, identification of individuals

could be driven by differences in skull thickness across partici-

pants. Skull thickness could influence the conduction of neural

signals on the scalp, leading to idiosyncratic patterns of electri-

cal activity across people that are unrelated to brain function.We

addressed this potential issue of volume conduction by applying

a Laplacian transformation, which reduces the adverse effects of

volume conduction.43 Even when we account for potential differ-

ences in volume conduction on the scalp, we are still able to

identify individuals. Overall, our results provide strong evidence

that sparse ERP correlation patterns can robustly predict cogni-

tive ability. Inter-electrode correlations measured using EEG

track meaningful variation in neural activity that is related to indi-

vidual differences in cognition.

Limitations and future directions
In the current work, we analyze the correlation between two elec-

trodes’ trial-evoked EEG signal over time. These analyses do not

necessarily provide evidence for communication or causal rela-

tionships between, or shared processing in, different electrodes

or brain regions. These are separate—but important—questions

that should be addressed by future research. One way to begin

addressing these questions, which has been utilized in the fMRI

literature, would be to characterize inter-electrode correlations in

resting-state (i.e., task-free) EEG data and evaluate their utility

for identifying individuals and predicting behavior.

We analyzed EEG data while participants performed variants of

a lateralized change detection task. Therefore, it is not clear

whether predictions of working memory and general fluid intelli-

gence rely on activity evoked during this specific task state or

whether models would generalize to predict behavior from data

collected in other contexts. For example, are behaviorally relevant

signals present in intrinsic inter-electrode correlations—that is,

EEG activity observed at rest? Are individual differences in a

cognitive process best predicted by inter-electrode correlation

observed during a task that taxes that process (cf. Finn et

al.44)? To address these questions, future research can use

EEG data collected during rest and different tasks to predict

individual differences in other cognitive abilities, such as atten-

tional control or long-term memory. Future research should also

utilize the high temporal precision of EEG to address questions

about the temporal dynamics of different cognitive processes.

One complication with analyzing resting-state EEG data is that

our inter-electrode correlation measure may rely on time-locked

data that are averaged over many trials. We calculated time-

locked averaged EEG data because single-trial data were noisy.

Resting-state EEG data are typically collected continuously for a

specific amount of time. It does not have specific trials, and

therefore, it is not clear how to overcome low signal-to-noise ra-

tios with continuous resting-state EEG data. Nevertheless, it

would be theoretically impactful to determine whether there

are behaviorally relevant EEG correlation patterns that are pre-

sent at rest.

Conclusions
We demonstrate that a temporally precise but sparse pattern of

electrical activity identifies individuals and predicts cognitive
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abilities. Thus, it is not necessary to measure dense functional

networks with relatively high spatial resolution to predict impor-

tant individual variability in cognition. Instead, cognitively mean-

ingful variability in functional brain organization is also reflected

in sparse, high-frequency neural signals. In sum, our analyses,

which are temporally sensitive and easy and affordable to imple-

ment, provide a new arena in which we can better track and un-

derstand important individual differences in cognitive abilities.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB 2016b MathWorks https://www.mathworks.com/products/MATLAB.html

EEG Lab Schwartz Center for Computational

Neuroscience

https://sccn.ucsd.edu/eeglab/index.php

Code and data availability Open Science Framework https://osf.io/dbmuc/?view_only=

6d76f387774241fdb40dcfe68f66ec93
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources can be directed to either Nicole Hakim (nhakim2@stanford.edu) or Monica Rosenberg

(mdrosenberg@uchicago.edu).

Materials availability
This study did not generate any new or unique reagents.

Data and code availability
Data, analysis scripts, and a predictive model that is trained on the combination of the Oregon-site and Chicago-site datasets will be

available online upon publication at the following URL: https://osf.io/dbmuc/?view_only=6d76f387774241fdb40dcfe68f66ec93. See

Figure S3 for more information about the number of testing participants and model performance and see Figure S2 for more infor-

mation on model performance based on the number of predictive edges. Data were collected at two different study sites from indi-

viduals of both sexes: University of Oregon Eugene and the University of Chicago. Whereas data from the University of Oregon were

collected as part of a single study, data from the University of Chicago were compiled from multiple studies. Participants were re-

cruited from the respective university network and from their surrounding communities. Some of these samples are described in pre-

vious publications, while others are unpublished. All data are described below.

METHOD DETAILS

Participant information
University of Oregon

Data collected at Oregon were part of one study, and the results from this dataset were previously published.29 All participants (107

female) gave written informed consent according to procedures approved by the University of Oregon institutional review board.

Participants were compensated for participation with course credit or monetary payment ($8/hr for behavior, $10/hr for EEG). Our

analyses include data from 171 individuals. The numbers of participants included here is different than the number of participants

included in the original study because we only required that participants have usable EEG and change detection data, whereas

the prior analyses required participants to have completed all tasks.

University of Chicago

Data from the University of Chicago were collected by multiple experimenters for multiple independent studies. Experiments were

selected for inclusion based on whether they included a lateralized change detection task. All lateralized change detection EEG ex-

periments that have been run by the Awh/Vogel lab at the University of Chicago task were included.

Experimental procedures were approved by The University of Chicago Institutional Review Board. All participants gave informed

consent and were compensated for their participation with cash payment ($15 per hour); participants reported normal color vision

and normal or corrected-to-normal visual acuity. For the current analyses, University of Chicago data were combined into one large

sample. Of note, some individuals participated in more than one University of Chicago experiment. For these individuals, behavioral

data and EEG signal time-series for all trials from all of the experiments in which they participated were averaged. Across all of the

Chicago studies, there were 165 unique individuals. For a subset of the Chicago experiments, gender information is currently inac-

cessible due to Covid-19 limitations. Therefore, only the published studies contain information about gender.

Chicago study #1 was previously published45 and includes data from four separate experiments: 28 participants (13 female)

in experiment 1a, 20 participants (10 female) in experiment 1b, 20 participants (10 female) in experiment 2a, and 29

participants (13 female) in experiment 2b. Chicago study #2 was previously published46 and includes data from two separate
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experiments: 20 participants (8 female) in experiment 1 and 20 participants (9 female) in experiment 2. Chicago study #3 is was pre-

viously published.47 This study contains data from two separate experiments, however, we only analyzed data from experiment 1,

which contained data from 21 participants (15 female) because this was the only experiment that included a lateralized change

detection task. Chicago study #4 is not published and contains data from one experiment (20 participants). Chicago study #5 is

not published and contains data from two experiments (20 participants in experiment 1 and 19 participants in experiment 2). Chicago

study #6 is not yet published and contains data from two experiments (25 participants in experiment 1 and 19 participants in

experiment 2).

Experimental Design

In all experiments, participants performed a lateralized change detection task. At the beginning of each trial, a central cue was

presented to indicate which side (left or right) of the screen to pay attention to (Chicago study #6 did not have a cue on a subset

of trials. See below for further information.) Following the arrow cue, a memory array appeared, which consisted of a series of

objects on both sides of the screen. Participants were instructed to remember the objects that were presented on the cued side

of the screen, while ignoring the objects on the other side. Following the memory array there was a blank retention interval. The exact

duration of the retention interval varied across experiments. The response screen then appeared, which consisted of one object on

each side of the screen. Participants had to indicate if the object on the cued side was identical to the original object that was pre-

sented at that location (Chicago study #5 had a two-alternative forced choice response. See below for further information.) The exact

duration and stimulus parameters varied across experiments. For published datasets (University of Chicago studies 1–3), these de-

tails can be found in the original publications.45–47 For unpublished datasets (University of Chicago studies 4–6), details are described

below.

University of Chicago study #4

Stimuli were presented on a 24-in. LCD computer screen (BenQ XL2430T; 120-Hz refresh rate) on a Dell Optiplex 9020 computer.

Participants were seated with their heads on a chin rest 74 cm from the screen. Each trial began with a blank inter-trial interval

(750 ms), followed by a diamond cue (500 ms) indicating the relevant side of the screen (right or left). This diamond cue (maximum

width = 0.65�, maximum height = 0.65�) was centered 0.65� above the fixation dot and was half green (RGB value: 74, 183, 72) and

half pink (RGB value: 183, 73, 177). Half of the participants were instructed to attend to the green side, and the other half were in-

structed to attend to the pink side. After the cue, colored squares (1.1� 3 1.1�) briefly appeared in each hemifield (150 ms) with a

minimum of 2.10� (1.5 objects) between each square. Four colored squares appeared on each side of the screen, and then

disappeared for 2000 ms. Squares could appear within a subset of the display subtending 3.1� to the left or right of fixation and

3.5� above and below fixation. Colors for the squares were selected randomly from a set of nine possible colors (RGB values:

red = 255, 0, 0; green = 0, 255, 0; blue = 0, 0, 255; yellow = 255, 255, 0; magenta = 255, 0, 255; cyan = 0, 255, 255; orange =

255, 128, 0; white = 255, 255, 255; black = 1, 1, 1). Colors were chosen without replacement within each hemifield, and colors could

be repeated across, but not within, hemifields. After the retention interval, the response screen then appeared. The response screen

consisted of one object on each side of the screen. Participants had to report whether the color of the object on the cued side

changed colors. On a subset of trials, a series of colored squares appeared on the midline during the retention interval. These trials

were excluded from analysis.

University of Chicago study #5

The experimental parameters replicate those from Chicago study #4, except for the following changes. In Chicago study #5 exper-

iment 1, the memory array remained on the screen throughout the delay on a subset of trials. These trials were excluded from anal-

ysis. However, because thememory array remained on the screen throughout the delay, the response screen was different than all of

the other experiments. On each side of the screen, therewas one object with two colors on each side of the screen,48 and participants

had to report which of the two presented colors matched the original memory item. In Chicago study #5 experiment 2, the memory

array consisted of two or four colored squares on each side of the screen, and following thememory array, the screen remained blank

for 1,650 ms.

University of Chicago study #6

This study included two experiments. Stimuli in all experiments were presented on a 24-in. LCD computer screen (BenQ XL2430T;

120-Hz refresh rate) on a Dell Optiplex 9020 computer. Participants were seated with their heads on a chin rest 74 cm from the

screen. Each trial began with a blank inter-trial interval (1000 ms), followed by a gray cross (600 ms). The cue was either pointed

to the attended location (50% of trials) or was uninformative (50% of trials). Following the cue, the memory array appeared

(200 ms), which consisted of two (50% of trials) or four (50% of trials) colored target squares that appeared either to the left, right,

above or below fixation. Four colored distractor circles also appeared in a position adjacent to the target squares. The display

was visually balanced with four gray (RGB value: 128, 128, 128) circles across from both the target squares and the distractor circles,

which matched the average luminance of the colors. Participants were told to remember the colors of the squares over the delay and

ignore the circles. Squares had a side length of 0.9� visual angle and circles had a diameter of 1.0� (squares and circles covered the

same area, viz., 3600 pixels). Following the memory array, the screen remained blank for 1000 ms. After this, the response screen

appeared, which consisted of one colored square. Participants had to determine whether the colored square was the same color

as the original colored square in that location. Colors for the target squares and distractor circles were selected randomly from a

set of nine possible colors (RGB values: red = 255, 0, 0; green = 0, 255, 0; blue = 0, 0, 255; yellow = 255, 255, 0; pink = 255, 0,

255; cyan = 0, 255, 255; purple = 128, 0, 255; dark green = 4, 150, 60; orange = 255, 128, 0). Colors were chosen without replacement.
e2 Current Biology 31, 4998–5008.e1–e6, November 22, 2021
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EEG acquisition and artifact rejection
University of Oregon

EEG was recorded from 22 standard electrodes sites in an elastic cap (ElectroCap International, Eaton, OH) spanning the scalp,

including International 10/20 sites F3, Fz, F4, T3, C3, Cz, C4, T4, P3, Pz, P4, T5, T6, O1, and O2, along with nonstandard sites

OL, OR, PO3, PO4, and POz. Two additional electrodes were positioned on the left and right mastoids. All sites were recoded

with a left-mastoid reference, and the data were re-referenced offline to the algebraic average of the left and right mastoids. To detect

blinks, vertical electrooculogram (EOG) was recorded from an electrodemounted beneath the left eye and referenced to the left mas-

toid. The EEG and EOG signals were amplified with an SA Instrumentation amplifier (Fife, Scotland) with a bandpass of 0.01–80 Hz

andwere digitized at 250 Hz in Labview 6.1 running on a PC. Offline, data were low pass filtered at 50 Hz to eliminate 60 Hz noise from

the CRT monitor. Eye movements (> 1�), blinks, blocking, drift, and muscle artifacts were detected by applying automatic criteria.

This pipeline differs from the pipeline that was used in the original paper,29 which is why the current analyses include more

participants. A sliding-window step function was used to check for eye movements in the EOG channels. We used a split-half

sliding-window approach (window size = 100 ms, step size = 50 ms, vertical threshold = 75 mV, horizontal threshold = 15 mV).

University of Chicago

EEG was recorded from 30 active Ag/AgCl electrodes (actiCHamp, Brain Products, Munich, Germany) mounted in an elastic cap

positioned according to the international 10-20 system (Fp1, Fp2, F7, F8, F3, F4, Fz, FC5, FC6, FC1, FC2, C3, C4, Cz, CP5, CP6,

CP1, CP2, P7, P8, P3, P4, Pz, PO7, PO8, PO3, PO4, O1, O2, Oz). Two additional electrodes were affixed with stickers to the left

and right mastoids, and a ground electrode was placed in the elastic cap at position Fpz. Data were referenced online to the right

mastoid. For Chicago studies #1-5, data were re-referenced offline to the algebraic average of the left and right mastoids, and

incoming data were filtered (low cutoff = 0.01 Hz, high cutoff = 80 Hz; slope from low to high cutoff = 12 dB/octave) and recorded

with a 500-Hz sampling rate. For Chicago study #6, data were re-referenced offline to the average of all electrodes, and incoming

data were filtered (low cutoff = 0.01 Hz, high cutoff = 250 Hz; slope from low to high cutoff = 12 dB/octave) and recorded with a

1000-Hz sampling rate. For all datasets, impedance values were kept below 10 kU. Eye movements and blinks weremonitored using

electrooculogram (EOG) activity and eye tracking. EOG data were collected with five passive Ag/AgCl electrodes (two vertical EOG

electrodes placed above and below the right eye, two horizontal EOGelectrodes placed�1 cm from the outer canthi, and one ground

electrode placed on the left cheek). Eye tracking data was collected using a desk-mounted EyeLink 1000 Plus eye-tracking camera

(SR Research, Ontario, Canada) sampling at 1,000 Hz. For a comparison of electrode reliability across the Oregon-site and Chicago-

site data, see Figure S5.

For Chicago studies #1-5, eye movements, blinks, blocking, drift, and muscle artifacts were first detected by applying automatic

criteria. After automatic detection, trials weremanually inspected to confirm that detection thresholds were working as expected. For

the automatic eye movement detection pipeline, a sliding-window step function was used to check for eye movements in the

horizontal EOG (HEOG) and the eye-tracking gaze coordinates. For HEOG rejection, we used a split-half sliding-window approach

(window size = 100ms, step size = 10ms, threshold = 20 mV). HEOG rejection was only used if the eye-tracking data were bad for that

trial epoch.We slid a 100-ms time window in steps of 10ms from the beginning to the end of the trial. If the change in voltage from the

first half to the second half of the window was greater than 20 mV, it was marked as an eye movement and rejected. For eye-tracking

rejection, we applied a sliding-window analysis to the x-gaze coordinates and y-gaze coordinates (window size = 100ms, step size =

10 ms, threshold = 0.5� of visual angle). We additionally used a sliding-window step function to check for blinks in the vertical EOG

(window size = 80 ms, step size = 10 ms, threshold = 30 mV). We checked the eye tracking data for trial segments with missing data

points (no position data are recorded when the eye is closed). We checked for drift (e.g., skin potentials) by comparing the absolute

change in voltage from the first quarter of the trial to the last quarter of the trial. If the change in voltage exceeded 100 mV, the trial was

rejected for drift. In addition to slow drift, we checked for sudden step-like changes in voltage with a sliding window (window size =

100 ms, step size = 10 ms, threshold = 100 mV). We excluded trials for muscle artifacts if any electrode had peak-to-peak amplitude

greater than 200 mV within a 15-ms time window. We excluded trials for blocking if any electrode had at least 30 time points in any

given 200-ms time window that were within 1mV of each other.

For Chicago study #6, eye movements, blinks, blocking, drift, and muscle artifacts were detected by applying automatic criteria

only. To identify eye-related artifacts, eye-tracking data were first baselined identically to EEG data (i.e., subtraction of the mean

amplitude of x and y coordinates for the time from�200 to 0 ms). Then, the Euclidian distance from the fixation cross was calculated

from baselined data. Saccades were identified with a step criterion of 0.6� (comparing the mean position in the first half of a 50 ms

windowwith themean position in the second half of a 50-msec window; windowmoved in 20ms steps). Drifts were identified by eye-

tracking data indicating a distance from the fixation of > 1�. Both eyes had to indicate an eye-related artifact for a trial to be excluded

from analysis. In addition, trials in which any EEG channel showed a voltage of more than 100 mV or less than�100 mV were rejected.

Behavioral analysis

Working memory capacity (K score) was used to measure task performance.19,20 Capacity was calculated with the formula

K = S(H – F), where K is working memory capacity, S is the size of the array, H is the observed hit rate, and F is the false alarm

rate.K scoreswere calculatedwith different set sizeswithin theOregon- andChicago-site data.Within theOregon-site data,K scores

were calculated from a separate working memory task collected outside the EEG booth that that had both set size 2 and 6 for all

participants. For the Chicago-site participants, K score was calculated using different set sizes, depending on which experiment(s)

the participant completed. Chicago-site set sizes included 2, 3, 4, and 6 items. In the Chicago sample, there was no significant rela-

tionship between the number of trials that a participant completed and K score: rs = 0.13, p = 0.10, mse = 1.65e6 (STAR Methods).
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Calculation of inter-electrode correlations using EEG
Electrode organization

We analyzed EEG data that was collected while participants performed a lateralized change detection task. In this type of task, par-

ticipants attend andmaintain information on either the left or right side of the screen on any given trial. This results in lateralized neural

activity that is contralateral to the remembered items.3 For example, if stimuli are presented on the left side of the screen, this later-

alized neural activity would be present in electrodes O2, PO8, PO4, etc., whereas if stimuli were presented on the right side of the

screen, it would be present in electrodes O1, PO7, PO3. We accounted for this lateralized neural activity by aligning neural activity

based on which side of the screen participants were attending on each trial. For example, activity for electrode number 10 in the ma-

trix included data fromPO8 on ‘‘attend-left’’ trials and data fromPO7 on ‘‘attend- right’’ trials. Central electrodes (Fz, Cz, and Pz) were

unaffected by this organization. This method of alignment is like how CDA analyses account for the contralateral organization of the

visual system.3

Inter-electrode correlations of ERP activity

The Chicago andOregon datasets had different numbers of electrodes. Therefore, in our analyses we only included the 17 electrodes

that overlapped between the two datasets: F3, Fz, F4, C3, Cz, C4, P7, P3, Pz, P4, P8, PO8, PO4, PO3, PO7, O1, and O2.

Previous fMRI connectome-based models have concatenated task data across trials or runs, and then correlated these concat-

enated time series across all pairwise nodes (here, electrodes). Because EEG data are noisy when concatenated across trials, we

instead averaged the raw amplitude at each of these 17 electrodes across all trials from time points 0 (the onset of the memory array)

to 1000 ms. This is analogous to calculating one ERP time course for each electrode. The shortest experiment (Oregon-site exper-

iment) presented stimuli for 100 ms and had a retention interval of 900 ms. Therefore, time point 0 corresponds to the onset of the

memory array in all experiments and time point 1000 corresponds to the end of the shortest retention interval (i.e., 100 ms stimulus +

900ms retention interval). The durations of thememory array varied across experiments, so the offset varied within the analyzed time

window.We analyzed data from the same timewindow for all experiments tomatch the number of time points included in the analysis

across experiments. We computed the Pearson correlation of this trial-averaged EEG activity for all pairwise electrodes for each

participant separately. For each participant, this resulted in a 173 17 matrix of the correlation between the time course of each elec-

trode to each other electrode. We Fisher z-transformed correlation coefficients and submitted the resulting ERP correlation matrices

to the analyses described below.

To investigate whether stimulus-evoked activity influenced our predictive models, we also calculated inter-electrode correlation

matrices based on the offset of the stimuli in each study. For example, for Chicago dataset #5, the stimuli remained on the screen

for 200 ms. Therefore, we calculated ERPs for each electrode from stimulus offset (200 ms) until the end of the retention interval

(1000 ms). The Oregon-site stimuli remained on the screen for 100 ms. Therefore, for that experiment, we calculated ERPs for

each electrode from 100-900ms, to match the total amount of time included in our analyses across experiments. We then calculated

our inter-electrode correlation matrices, as described above.

Statistical analyses

We tested all analyses within the Oregon dataset, whenever this was possible. We then replicated these analyses and externally

validated predictive models in the compiled Chicago dataset.

EEG fingerprinting

This analysis investigates whether individuals’ inter-electrode correlation patterns are unique and stable enough to distinguish them

from a group. These methods were adopted from a previous paper that investigated functional connectome fingerprinting in fMRI.7

To identify individuals in the Oregon dataset, we compared participants’ vectorized shape-task and color-task inter-electrode cor-

relation matrices. Specifically, for each individual, we correlated their ‘‘target’’ color-task vector of inter-electrode correlations from

with a ‘‘database’’ of all shape-task vector of inter-electrode correlations. An individual was considered accurately identified if the

maximum correlation was with their own shape-task data. We repeated this analysis using shape-task vectors as the ‘‘targets’’

and color-task vectors as the ‘‘database.’’ Finally, we characterized EEG fingerprinting accuracy as the number of correct identifi-

cations divided by the number of participants*2.

For the Chicago study, we analyzed data from the subset of 45 individuals who participated in more than one experiment. For each

person in this sample, we first calculated and vectorized an inter-electrode correlation matrix from each experiment in which they

participated separately. Next, we selected one of these vectors to serve as the ‘‘target.’’ We compared this target to a database,

which included 19 individuals’ vectors of inter-electrode correlation from another task in which the target individual also participated

(including the target individual). We chose 19 because this was the minimum number of participants in any individual study, and we

wanted to equate chance levels across the experiments. To predict subject identity, we computed the similarity between the target

vector of inter-electrode correlations and each database vector, and the predicted identity was that with themaximal similarity score.

Similarity was defined as the Pearson correlation between the vectors.

To ask whether the specific inter-electrode correlations (‘‘features’’) that predict behavior contribute to identification more than

expected by chance, we ran these analyses including only those features that significantly predicted behavior (see EEG-based pre-

dictive modeling below). To determine whether these results were due to down sampling the number of features included in the ERP

correlation matrix, we compared the results from the significant feature analysis to an analysis with the same number of randomly

selected features.
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To account for potential differences in skull thickness across individuals that could affect inter-electrode correlations and result in

an overestimation of identification accuracy, we applied a Laplacian transformation to the time series data and then re-ran identifi-

cation analyses.

To assess the statistical significance of identification accuracy, we performed non-parametric permutation tests. We ran the same

analyses as above, except we shuffled the subject labels in each iteration, so that they would randomly align with the ERP correlation

data. This shuffling of labels was repeated 10,000 times.

EEG-based predictive modeling

Prediction methods were adopted from previous work using fMRI functional connectivity to predict behavior.14,28 We first separated

data into training and testing sets. For internally validated models, we used 5-fold cross-validation and permutation testing to deter-

mine whether the model significantly predicted behavior. For external validation analyses, we trained models using data collected in

Oregon and tested them using data collected in Chicago and vice versa.

To identify the features that were significantly related to behavior in the training sample, we correlated each value in the matrix of

inter-electrode correlations to K score using Spearman’s correlation. This approach replicated the connectome-based predictive

modeling pipeline applied to fMRI data28 and allowed us to compare the anatomy of the inter-electrode correlation feature sets

(‘‘networks’’) positively and negatively correlatedwith behavior. For the internally validatedmodels and the externally validatedmodel

trained on the Chicago dataset, we selected the top 5% of features that most strongly predicted behavior in the positive and negative

directions. For the externally validated model that was trained on all of the Oregon data, we identified the 5% of features most

positively and the 5% of features most negatively correlated with working memory capacity (10% of total features) in the color

and shape task separately. We defined predictive features as those that were included in the top 5% of features positively and nega-

tively predicting behavior in both tasks to get the most robust predictive feature set. We did not perform this overlap analysis for the

externally validatedmodel that was trained on the Chicago dataset because each task had a relatively small sample size (ns = 19–29),

which could result in unreliable features.

Using these selected features, we then calculated single-subject summary values for all training subjects. To do this, we summed

the correlation-strength values for each individual for both the positively and negatively predictive feature sets separately, and then

we took the difference between them. We trained a linear model with these summary features and K scores from the training set to

predict behavior from inter-electrode correlations. We then used this model to predict K score in the testing set. To do this, we calcu-

lated summary features in test set participants, and input these summary scores into the model defined in the training sample to

generate predictions for each test set subject’s K score. To determine whether our models significantly predicted performance,

we then compared predicted K scores to the observed K scores using Spearman rank correlation (rs) values, mean square error

(mse), and non-parametric p-values for both.

For the models validated within-site, we used 5-fold cross validation, which we iterated 10,000 times. We calculated rs and mse

within each fold.We then Fisher-z transformed the rs values, resulting in one zobs value per fold.We then averaged the zobs andmseobs
values across folds within one iteration. We additionally calculated null znull andmsenull values within each fold by shuffling the behav-

ioral labels. This resulted in 10,000 observed and 10,000 null z and mse values. We then took the mean of the 10,000 observed zobs
andmseobs values. We then transformed the mean zobs value back to rs. This resulted in one observed rs andmseobs value across all

folds and iterations. We then calculated non-parametric p-values for both rs and mse.

To determine whether the observed rs value was significantly above change, we compared the null rs distribution to mean

observed rs using the following formula:

p =
1+ sumðrnullRrobsÞ

1+ nIter

Where rnull is the null rs distribution; robs is themean rs value; nIter is the number of iterations; and p is the non-parametric p-value for rs.

We calculated the significance of mse using a very similar formula:

p =
1+ sumðmsenull%meanðmseobsÞÞ

1+ nIter

Here, msenull is the null mse distribution; mseobs is the observed mse distribution; nIter is the number of iterations; and p is the non-

parametric p-value formse. Here, we determine how many values from the null distribution are less than or equal to the mean of the

observed mse distribution because we expect mse to be smaller when the model fits the data better.

For our externally validatedmodels, we calculated one Fisher-z transformed rs (zobs) andmseobs value for each observed data point

in the testing dataset.We additionally calculated 10,000 null Fisher-z transformed rs andmse by shuffling the behavioral labels 10,000

times. We then compared these null distributions to their respective observed values using the same formulas as we used for the

internally validated models. However, in this case, there was only one observed rs and mse value, so those values were compared

to the null rnull and msenull distributions.

Relationship between number of trials and working memory capacity

The Chicago-site data is a compilation of 12 different experiments, and a given participant could have completed any number of

these studies. There is some concern that participants who completed multiple studies could be different from participants who

only completed one study. One possibility is that participants with higher workingmemory capacity may bemore compliant test sub-

jects and, thus, could have completed more studies than subjects with lower working memory capacities. If this is the case, then our
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inter-electrode correlation matrices would include more trials for higher than for lower working memory capacity participants. To

investigate whether this was the case, we correlated working memory capacity with the number of trials included in our analyses.

We found that there was not a significant relationship between working memory capacity and number of trials (r = 0.13, p = 0.10,

mse = 1.65e6). Therefore, our ability to predict working memory capacity across individuals in the Chicago-site dataset was not

contingent on differences in the number of trials between high and low working memory capacity individuals. This is not an issue

in the Oregon-site data because all participants completed the same number of trials.

Of note, predictions for the Chicago-site data are numerically worse than those for the Oregon-site data for both within-site and

across-site validation. This could be due to the increased procedural variability in the Chicago-site data (e.g., different set sizes, stim-

uli, experimental procedures) compared to the Oregon-site data. Furthermore, the Chicago-site behavioral scores were calculated

using a variety of different set sizes, whereas the Oregon-site behavioral scores were calculated using only set size 2 and 6. These

differences in set size across the two datasets could drive differences in the reliability of measured working memory capacity. For

example, if someone’s true working memory capacity is 4 items, but their working memory capacity is calculated using set size 3

only, their calculated working memory capacity would be an underestimate of their true capacity. Notably, however, that these dif-

ferences between the two datasets emphasizes that our models are a robust, reproducible, and generalizable predictor. That is,

despite difference between the datasets, we were still able to significantly predict working memory capacity.

Model overlap
We calculated whether the predictive features from the Oregon and Chicago models significantly overlapped. We determined sig-

nificance of feature set overlap using the hypergeometric cumulative density function in MATLAB.14 The formula was as follows:

p = 1-hygecdf(x, M, K, N), where x is the number of overlapping features,M is the total number of features in the matrix, K is the num-

ber of features in the Oregon model, and N is the number of features in the Chicago model.

Interestingly, this set of predictive features that were included in both the Oregon-site and Chicago-site models did not include any

frontal electrodes. One possible explanation for the lack of frontal electrodes could be that frontal electrodes tend to be noisier than

posterior electrodes, potentially even after artifact rejection. Given this, we sought to determine whether frontal electrodes were less

reliable than other electrodes, and if that reliability was correlated with behavioral relevance. To do this, we calculated split-half

reliability of each electrode (see STAR Methods for further detail). Then, we compared each electrodes’ reliability score with their

behavioral relevance—as measured by the correlation between inter-electrode correlation strength and behavior, averaged

for each electrode. We found that there was not a significant relationship between electrode reliability and predictability: Oregon,

r = –0.13, p = 0.62; Chicago, r = 0.40, p = 0.12. Therefore, the lack of features (i.e., inter-electrode correlations) involving frontal elec-

trodes in our workingmemorymodels is unlikely to be due to an increase in noise in those features relative to others. Another possible

explanation for the lack of frontal edges in our predictive network is that signals from these electrodes could be more consistent

across people than posterior and occipital electrodes. This wouldmake them less informative of individual variation and could explain

why they are not included in our individual differences-based models.

Relationships between predicted working memory and fluid intelligence
Finally, we asked whether models that predicted working memory capacity across individuals also predicted fluid intelligence (gF).

We ran these analyses only with the Oregon dataset because these participants completed behavioral tasks assessing a range of

cognitive abilities in addition to the change detection tasks used to measure K. These analyses included the 138 participants who

completed all cognitive tasks.

We were specifically interested in the relationship between inter-electrode correlations and gF. To investigate this relationship, for

each subject in the Oregon dataset, we calculated the strength in the working memory feature set defined in the Chicago sample.

Then, using 5-fold cross-validation, we defined a linear model relating this strength value to gF. We then used this model to predict

the left-out set of participants’ gF scores. Previous research has shown that gF and K score are highly correlated.29,30 Given this rela-

tionship, we calculated a theoretical ceiling of these models’ performance as the correlation between gF and K scores.

In the Predicting fluid intelligence section of the main text, we demonstrated that our working memory models generalized to pre-

dict individual differences in gF. Of note, this gFmodeling approach is similar to correlating predicted K and observed gF, except that

the linear model has a gF-specific coefficient that changes in every fold. Both observed and predicted K scores are correlated with gF

(observed K: rs = 0.41, p = 5.98e�7; predicted K: rs = 0.18, p = 0.038), suggesting that retaining the model is not critical.

As a secondary analysis, we also investigated the relationship between predicted K scores and performance on all other behavioral

tasks (Table S1). To do this, we computed the Spearman correlation between 1) observed K score and all the other tasks and 2) pre-

dicted K score and all the other tasks. Then, we correlated these two columns of data to determine whether there was a significant

relationship between performance on all tasks and themeasured and predicted K scores. We did this separately for the color and the

shape tasks.
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