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A crucial role for working memory in temporary information processing and guidance of complex behavior
has been recognized for many decades. There is emerging consensus that working-memory maintenance
results from the interactions among long-term memory representations and basic processes, including
attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as
sub-cortical structures. The nature of such interactions can account for capacity limitations, lifespan
changes, and restricted transfer after working-memory training. Recent data and models indicate that work-
ing memory may also be based on synaptic plasticity and that working memory can operate on non-
consciously perceived information.
Introduction
Working memory maintains information in an easily accessible

state over brief periods of time (several seconds to minutes).

This feature is required for future goal-directed behavior and

allows us to act beyond the confines of the here and now. As

such, working memory is taxed by numerous laboratory and

everyday cognitive challenges. The research literature on work-

ing memory is enormous, and in this Perspective we will not pro-

vide a comprehensive review. Rather, we aim to present a

condensed summary of key facts and features to illustrate the

‘‘neurocognitive architecture’’ of working memory (Box 1; for

related accounts, see D’Esposito and Postle, 2015; Fuster,

2009; Jonides et al., 2008).

Although there is no complete consensus on its definition, a

basic feature in most conceptualizations of working memory is

short-termmaintenance of information in the absence of sensory

input. Here, too, this definition is at the heart of our treatment of

working memory. Information maintenance is considered to be

the result of an interaction between basic building blocks of

working memory (Figure 1A), notably a selective attention pro-

cess (Figure 1B) that operates on perceptual information and

related long-term memory (LTM) representations. Thus, here

and elsewhere, attention is understood to be a cornerstone of

working-memory processes (e.g., Baddeley and Hitch, 1974;

Cowan, 1995; see Kastner and Ungerleider, 2000; Petersen

and Posner, 2012). Figure 1B exemplifies maintenance of object

information. First, in orange, the encoding of information into

working memory is the result of interactions among selective

attention processes and perceptual object representations that

trigger related LTM object representations. Working-memory

representations are vulnerable to distraction and interference.

Therefore, when the perceptual input no longer is present, sus-

tained attention along with a rehearsal process is crucial for

maintaining the information in working memory (red contours in

Figure 1B). If all the information to be maintained can ‘‘fit’’ within
the focus of attention, an active maintenance process fulfills

maintenance through reverberating signals between regions

that provide attentional/‘‘top-down’’ signals (e.g., fronto-parietal

areas; see Kastner and Ungerleider, 2000) and regions specif-

ically related to the current content of working memory (i.e.,

perceptual and LTM representations). If there is more tomaintain

than fits within the focus of attention, an additional rehearsal

process needs to complement the active maintenance pro-

cess. Finally, at the retrieval phase (white contours), as in a de-

layed-match-to-sample task, selective attention and pattern

completion processes become engaged to match the percep-

tual information provided at the retrieval stage with information

maintained in working memory. Figure 1C exemplifies the situa-

tion in which ‘‘manipulation operations’’ are performed on the

information currently maintained in working memory. This could

bemental arithmetics, e.g., as in the computation-span working-

memory task, or it could involve updating of the current content

of workingmemory (e.g., O’Reilly, 2006). The concept of working

memory includes the prospective use of information, which has

been promoted as a major motivation for using the term ‘‘work-

ing,’’ rather than ‘‘short-term,’’ memory (e.g., Fuster, 2009). Pur-

poseful use of the temporarily maintained information depends

on the objective (goal) and structure of the task, as well as the

context in which the task is performed. Together, these aspects

provide the scaffold on which working memory proceeds.

Accordingly, task set, prospective planning, and other cognitive

control operations are integral parts of working-memory pro-

cessing (purple field in Figure 1).

According to this ‘‘component processes’’ view of working

memory, no processes (and correspondingly no brain structures)

are unique or specific to workingmemory. Rather, workingmem-

ory is the result of various combinations of processes that in

other constellations can be functionally described in other terms

than working memory (Figure 1D; cf. Cowan, 2001; D’Esposito

and Postle, 2015; Fuster, 2009; Jonides et al., 2008). It should
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Box 1. Current Status of the Field

d Working memory results from the interaction between

several component processes, including attention, pro-

spection, and perceptual and long-term memory repre-

sentations.

d Many brain regions interact during working memory and

include ‘‘executive’’ regions in the PFC, parietal cortex,

and basal ganglia, as well as regions specialized for

processing the particular representations to be main-

tained, such as the fusiform face area for maintaining

face information.

d Persistent neural activity in various brain regions accom-

panies working memory and is functionally necessary for

maintenance and integration of information in working

memory.

d Working-memory capacity is limited and may only hold a

small amount of information (absolute limits remain contro-

versial); capacity can be increased through ‘‘chunking’’

bits of information into more complex units.

d Working-memory functioning changes across the lifespan

with an inverted U-shaped trajectory and can be modified

by training.

d Working memory may involve short-term plasticity but

does not seem to require structural alterations, such as

new protein synthesis, as it works by recruiting already ex-

isting synapses and ion channels (‘‘activated LTM’’).
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be emphasized that working memory, as conceptualized here, is

a particular state of a representation (temporarily enhanced

accessibility), regardless of the kind of representation. That is,

working memory can basically involve any kind of representation

(verbal, visual, auditory, spatial, etc.), including various proce-

dures or temporally ordered action sequences (e.g., when

following a recipe), and by extension engage many different

parts of the brain, where these representations are stored.

Also, often the information to be encoded into working memory

does not exactly match stored representations (e.g., novel con-

figurations of familiar objects in tests of spatial working memory

or unfamiliar faces). Therefore, although stored information in

LTM can support working-memory maintenance, many tasks

will require encoding and maintenance of novel information

and, in some cases, even information that has no clear mapping

to stored information (Olsson and Poom, 2005). In the latter case,

working-memory capacity will be lower and may more or less

entirely rely on perceptual representations. Whether or not the

encoding of such information and other information into working

memory is likely to also foster new LTM representations, and by

inference lead to synaptic resculpting, will be further discussed

below.

Behavioral Properties of Working Memory
Capacity Limitations

A fundamental property of working memory is that it is highly

limited in how much information can be held active simulta-

neously (Baddeley, 2003; Cowan, 2001; Luck and Vogel,

1997). Most estimates of the average capacity among healthy
34 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
young adults suggest that working memory has a capacity limit

of approximately 3 or 4 simple items (Luck and Vogel, 1997).

This limitation highlights a sharp contrast between working

memory and LTM, which is thought to have a nearly boundless

capacity for storing new information from the environment. While

there is broad agreement that workingmemory canmaintain only

a small amount of information simultaneously, two factors make

a simple statement of amaximum limit very challenging. First, the

amount of information that can be held depends strongly on

whether the items can be grouped into meaningful units, or

‘‘chunks.’’ That is, by clustering information together one can

exploit preexisting information about concepts already stored

in long-term memory, which allows more efficient storage in

working memory, presumably by reducing the number of active

elements that must be maintained in working memory. Such

chunking can be observed in many domains, from the clustering

of letter strings to form acronyms of familiar concepts (Miller,

1956) to the exploitation of visual statistical regularities to form

grouped arrays of objects (Brady et al., 2009). Second, objects

with high levels of complexity may require additional resources

to adequately resolve their details. Thus, working-memory per-

formance may be reduced for such complex items due to

insufficient precision at encoding. Indeed, there is evidence for

variability in encoding precision even between objects presented

within a single array (van den Berg et al., 2012; Fougnie et al.,

2012). When considering these factors, it becomes apparent

that the functional limits to working-memory performance can

vary substantially depending upon the nature of the processing

demands imposed by the specific working-memory task. The

opportunity to utilize either LTM or grouping tends to increase

performance, while the requirement to report fine details of com-

plex objects tends to decrease performance.

Even when grouping cues and high-precision demands are

minimized, there is still debate about the nature of the maximum

limit. Specifically, is it best characterized as a maximal upper

limit on the number of discrete representations that can bemain-

tained? Or is it better described as a finite pool of resources for

representations that can be flexibly allocated to any arbitrary

number of items? There is extensive evidence acrossmany tasks

and memoranda that individuals can remember only 3–4 simple

items with near perfect accuracy, with steep drop-offs in perfor-

mance for arrays that exceed this number (Figure 2A). However,

flexible resource models can mimic such limits by positing that

all (or most) items from a display are represented in working

memory, but that with greater numbers of items the precision/

resolution of each representation dwindles (Bays and Husain,

2008; Wilken and Ma, 2004). Thus, errors for arrays that have

more than 3 or 4 items may be due to imprecise representations

of each of the items rather than being due to items simply not be-

ing stored in working memory. Although both models make

highly similar predictions regarding task performance across

varying working-memory loads (e.g., that mnemonic precision

declines with number of items), they differ in one key component:

the role of guessing. Discrete models propose that if a subject is

tested on an item from an array that is not held in one of the 3–4

slots, he or she will guess its identity. By contrast, continuous

models propose that subjects never truly guess because all

items from the display are assumed to be represented in working
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Figure 1. The Component Processes View of Working Memory
(A–D) Schematic overview of how different processing and representational components and associated neuronal networks interact when solving a working-
memory task. (A) Suggestions of processes relevant for working memory (blue field) are listed. The list is non-exhaustive and each process may be further
analyzed into sub-processes. Working memory is viewed as emerging from the interactions among process components, of which selective attention to
perceptual and long-term memory representations (green field; also non-exhaustive list) is central. The purple field connecting processes and representations
illustrate the inherent link between goals/task sets and working-memory processing. (B) How various processes and representations interact during a task that
requires maintenance of visual information, e.g., a delayed-match-to-sample (DMS) task, and how the involvement of different processes change dynamically
throughout task performance are exemplified. (C) Such interactions and dynamics during performance of a manipulation task, e.g., multiplying 42 with 12, are
exemplified. Here, procedural long-termmemory representations may also support solving the task, e.g., by recollecting procedures for how the multiplication of
two-digit numbers can be done efficiently. (D) A schematic mapping of processes during the ‘‘delay’’ phase in (B) to brain regions is shown, demonstrating the
distributed nature of processes and representations involved to solve working-memory tasks (see themain text for amore exhaustive account). Across the panels
it is highlighted that different processing components and representations come into play depending on task structure (e.g., maintenance or additional
manipulation requirements), sensory input (e.g., auditory/verbal or visual/object), and stages of processing (encoding, maintenance, or response). At a higher
level of description such mental events can be labeled ‘‘working memory.’’
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Figure 2. Behavioral and Neural Measures
Show Corresponding Working-Memory
Capacity Limits
(A) Working-memory performance from remem-
bering arrays of simple objects in a change
detection task (Luck and Vogel, 1997). Percent
correct (red) and estimated capacity (blue) are
shown as a function of number of items in the
array.
(B) EEG/CDA amplitude as a function of the
number of items to be remembered (Vogel and
Machizawa, 2004). The dashed line indicates the
average behavioral capacity for the group of
participants.
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memory. Thus, what appears to be guessing is just the conse-

quence of extremely imprecise information about each object.

However, recent work using modern Bayesian approaches has

demonstrated that subjects do indeed appear to guess when

probed on arrays that exceed typical capacity limits, thus sug-

gesting that even if there is information in the system for items

beyond a maximal number limit, subjects do not appear to be

able to utilize it (Donkin et al., 2013).

Individual Differences in Working-Memory Capacity

There are substantial differences between individuals in work-

ing-memory capacity. These differences are highly stable over

time and appear to be a core cognitive trait of the individual

(Kane and Engle, 2002). This is because an individual’s work-

ing-memory capacity is strongly predictive of his or her perfor-

mance on a wide variety of high-level cognitive measures,

such as fluid intelligence, abstract reasoning, mathematics and

language abilities, and overall academic performance (Cowan

et al., 2005; Daneman and Carpenter, 1980; Unsworth et al.,

2014). Extensive work in the past 20 years has indicated that

these individual differences are determined primarily by vari-

ability in consistently deploying attentional control over what is

stored in working memory, rather than the absolute amount of

storage space per se (Adam et al., 2015; Kane and Engle,

2002). Low-capacity individuals have more difficulty ignoring

distracting information than do high-capacity individuals. This

is in part because they are slower at disengaging attention

from irrelevant information that captures their attention (Fukuda

and Vogel, 2011). Thus, the ability to efficiently deploy attentional

control in overloading situations appears to be the common

thread that connects working-memory capacity to an individ-

ual’s ability to perform many complex cognitive tasks.

Brain Areas and Connections
In accordance with the component processing account of work-

ing memory outlined in the introduction, brain regions involved in

maintaining information inworkingmemory will varywith the type

of information to be maintained. Generally, the same brain re-

gions dedicated to sensory processing are believed to store sen-

sory information during delay periods and working-memory task

performance (Figure 1D). Accordingly, lesions to the temporal

cortex affect visual working memory but leave spatial working

memory intact (Owen et al., 1996), whereas parietal-lesion pa-

tients show the opposite pattern (Pisella et al., 2004). Similarly,
36 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
patients with lesions to regions associated with semantic stor-

age (e.g., the lateral temporal lobes and temporoparietal cortex;

Binder et al., 2009) have reduced verbal working-memory perfor-

mance (Bormann et al., 2015). Material-specific effects are also

evident in neuroimaging research, where different stimulus cate-

gories, such as faces and houses, activate category-specific

regions of the ventral visual cortex during working-memory

maintenance (e.g., Ranganath et al., 2004). More recently,

research using multivariate pattern analyses has demonstrated

that the particular content held in visual working memory can

be decoded from activity patterns in visual cortex (see Postle,

2015 for an overview).

Maintaining working-memory item representations in sensory

regions makes them potentially vulnerable to task-irrelevant

stimulus processing, which may interfere with maintenance of

the working-memory content (Miller et al., 1993). The prefrontal

cortex (PFC) has been suggested to be critical for resilient infor-

mation maintenance during working-memory tasks. Single-cell

recordings in monkeys (Funahashi et al., 1989; Fuster and Alex-

ander, 1971) and, more recently, human neuroimaging studies

(Courtney et al., 1997) have demonstrated sustained neural ac-

tivity in the PFC during the delay period of working-memory

tasks (see below), and studies of PFC lesion patients indicate

that an intact lateral PFC is necessary for normal performance

in delayed-response tasks, particularly if the task involves

distraction (D’Esposito and Postle, 1999) or if task difficulty is

increased in other ways. Non-invasive electrical or magnetic

stimulation of the PFC has also been shown to affect working-

memory performance (Brunoni and Vanderhasselt, 2014; Fere-

does et al., 2011).

Thus, previous research has established that the PFC is caus-

ally involved in normal working-memory functioning. Moreover,

the PFC likely contributes to working memory in several ways,

and sub-divisions of PFC have been suggested. However, there

is yet no consensus on the details of the functional organization

of the PFC. Several meta-analyses have demonstrated regional

specificity, in that the left, particularly ventral, PFC is more

involved in verbal working-memory tasks, whereas the right,

particularly dorsal, PFC ismore involved in spatial working-mem-

ory tasks (Nee et al., 2013; Owen et al., 2005; Wager and Smith,

2003). Early animal models suggested a dorsal/ventral dissocia-

tion based on spatial versus object working memory (Levy and

Goldman-Rakic, 2000), but differences in task difficulty between
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material types may have influenced results. Correspondingly,

tasks involving updating and ordering of working-memory con-

tent (i.e., manipulation tasks) are more likely to involve dorsolat-

eral PFC compared with maintenance tasks (Wager and Smith,

2003). A recent meta-analysis found little support for regional

specificity within the PFC for different types of executive de-

mands, such as distractor resistance, intrusion resistance,

updating, and shifting (Nee et al., 2013).

Although the organizational principle of the PFC remains un-

clear, it may be more based on content-oriented associations

than on process types (Fuster, 2009; Miller and Cohen, 2001).

However, the ‘‘content’’ of PFC representations seems to be

more complex/abstract compared with representations in pos-

terior brain regions. Specifically, recent research has demon-

strated that frontal cortex neurons have ‘‘high dimensionality’’

(Rigotti et al., 2013), in that they code for combinations of item-

related and task-related information (see below). This is consis-

tent with a view of the PFC as primarily associated with cognitive

control functions related to ‘‘goals and means to achieve them’’

(Miller and Cohen, 2001, p. 167). Such prospective codes have

been suggested to underlie the organization of lateral PFC, in

that the abstraction level of goals and task rules are suggested

to peak in rostral PFC and decrease, i.e., become more and

more specific to certain situational contexts, toward posterior

parts (Badre and D’Esposito, 2009; Fuster, 2009; Koechlin and

Summerfield, 2007).

Together with the PFC, parietal cortex is also strongly involved

in working-memory functioning. Superior parietal cortex has

been associated with executive aspects of working memory

(Collette et al., 2005; Koenigs et al., 2009) and is thought to

implement selective attentional control (Figure 1D; see Awh

et al., 2006). Interestingly, parietal cortex activity correlates

with working-memory capacity, such that activity increases

with an increasing number of items to remember until the limit

of 3–4 items is reached, at which time activity levels out

(Figure 2B; Vogel andMachizawa, 2004). Aswith the PFC, spatial

working-memory tasks commonly activate parietal cortex bilat-

erally, with some lateralization toward the right hemisphere

(Nee et al., 2013; Owen et al., 2005). Such lateralization is also

consistent with patient studies, in which lesions to the right pari-

etal cortex impair spatial working memory, whereas left-sided

lesions do not (Koenigs et al., 2009). In contrast, verbal work-

ing-memory performance is greatly affected in left-lesion pa-

tients (Shallice and Warrington, 1970; Vallar and Baddeley,

1984). However, such lesion symptoms are likely due to damage

of ventral rather than dorsal parietal cortex, which is also part of

the language network (Binder et al., 2009). Thus, together with

superior temporal and ventral prefrontal regions, left inferior pa-

rietal cortex is critical for verbal working memory (Buchsbaum

and D’Esposito, 2008). Although usually not highlighted as a

key region of the working-memory network, the cerebellum is

commonly activated in working-memory tasks (Nee et al.,

2013). The cerebellum has been suggested to support verbal

rehearsal, but may contribute to workingmemorymore generally

(Stoodley and Schmahmann, 2009).

Basal ganglia, and more specifically striatal, involvement in

working-memory tasks is a relatively common finding in neuroi-

maging research (Wager and Smith, 2003), and basal ganglia are
key structures in computational models (O’Reilly, 2006). Striatal

involvement is also supported by human lesion studies (Voytek

and Knight, 2010) and findings of reduced working-memory per-

formance related to fMRI BOLD signal and dopamine changes in

the striatum in Parkinson’s disease patients (Ekman et al., 2012).

According to computational models, the striatum acts as a

gating mechanism for representations in the PFC, by controlling

when PFC representations should be maintained versus up-

dated (O’Reilly, 2006). This idea is supported by working-

memory training studies (see below) and counterintuitive

improvements in distractor resistance for Parkinson’s disease

patients off dopamine medication; reduced striatal dopamine

levels impairs the updating regulation by the striatum, which

makes PFC representations more rigid and thereby more dis-

tractor resistant (Cools et al., 2010). Also, McNab and Klingberg

(2008) showed that PFC and basal-ganglia activity was positively

correlated with working-memory capacity and that parietal load

effects, here associated with unnecessary storage of distracting

information, was negatively correlated with activity in basal

ganglia (McNab and Klingberg, 2008). As noted above, low-

capacity individuals have more difficulty ignoring distracting in-

formation than high-capacity individuals, and the gate-keeping

function of fronto-striatal regions and associated dopamine

mechanisms is thus one likely source of the capacity limits of

working memory (Cools and D’Esposito, 2011; see also the

sub-section Lifespan Changes).

A key finding that early on motivated the distinction between

short-term and long-term memory was that patients with medial

temporal lobe (MTL) resection had heavily impaired long-term

memory but apparently normal short-term memory and the

MTL may therefore not be considered important for working

memory. However, neuroimaging research has demonstrated

MTL activity during working-memory tasks (e.g., Axmacher

et al., 2007), and it has more recently been suggested that the

MTL may be needed for working-memory tasks that require

binding and relational processing. For example, Olson et al.

(2006) demonstrated that patients with bilateral MTL lesions

performed normally on tasks that required maintenance of only

objects or only locations throughout an 8-s delay, but were

impaired when trying to maintain object-location conjunctions.

However, a recent MTL patient study did not find working-mem-

ory impairment even though the task required binding/relational

processing (Allen et al., 2014). An alternative interpretation of the

MTL—working memory findings is that the involvement of the

MTL system in working-memory tasks depends on load, such

that the MTL is required if task load exceeds working-memory

capacity (Jeneson and Squire, 2012). Such involvement further

highlights the dynamic relation between working and long-term

memory.

Consistent with the view of working memory as emerging from

the dynamic interaction of a large number of brain regions, con-

nectivity analyses of neuroimaging data show that, during a de-

layed-response task, activity in sensory regions is correlated

with activity in PFC, parietal cortex, striatum, and also the MTL

(Gazzaley et al., 2004). Furthermore, the integrity of white matter

pathways connecting the PFC, parietal cortex, and temporal cor-

tex correlates with working-memory performance (Charlton

et al., 2010). Taken together, previous research demonstrates
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 37
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that working memory is the result of the interaction among

several brain regions (Figure 1D); the specific regions involved

depend on a number of factors, including the type of material

to be remembered, the task (e.g., simple maintenance or addi-

tional manipulation requirements), and also which stage of the

dynamic interplay of processing components that is consid-

ered (e.g., during encoding, the delay period, or the response

phase).

Neuronal Codes and Properties of Neurophysiological
Responses
As a consequence of working memory involving multiple inter-

acting processes, a particular item maintained in working mem-

ory will be coded in a highly distributed manner (Fuster and

Bressler, 2012). For example, a visual working memory item

may consist of particular visual feature representations in early

(Harrison and Tong, 2009) and/or late (Ranganath et al., 2004)

parts of the ventral visual pathway, combined with relevant

spatial representations in frontal and parietal cortex (Nee et al.,

2013), as well as representations of the behavioral significance

of the item in frontal cortex (Rigotti et al., 2013). Moreover, given

that working-memory representations are assumed to rely on

existing perceptual and LTM representations, the general princi-

ple of distributed information storage (Fuster and Bressler, 2012)

is inherited by working-memory representations (Emrich et al.,

2013). The integration of such distributed components of infor-

mation is believed to rely on long- and short-range recurrent con-

nections among brain regions that support oscillatory signals

during working-memory tasks (e.g., Liebe et al., 2012; see

below). The necessity of such reverberant activity was demon-

strated by Fuster et al. (1985) by cooling either the PFC or the in-

ferotemporal cortex in awake macaques during a delayed

match-to-sample color discrimination task. Cooling of either re-

gion changed neural activity in the other region, with concomi-

tant drops in behavioral performance. Consistent with this

view, Siegel et al. (2009) have observed that information about

the identity of memoranda during the delay period can be de-

coded in the 40-hz oscillations of the local field potential in the

PFC of monkeys. This work also suggested a ‘‘phase-coding’’

scheme for holding multiple items in working memory simulta-

neously, in which each item in memory was held in distinct

phases of the gamma oscillation (see the sub-section Neural

Network Models of Working Memory).

Sustained delay activity has also been observed in the human

using visual event-related potentials (ERP). The contralateral

delay activity (CDA) is a retinotopically organized slow wave

that is a negative-going voltage over the hemisphere that is

contralateral to the positions of the items that are being remem-

bered on a trial. CDA amplitude is highly sensitive to the number

of items that are being remembered, but reaches an asymptote

at typical memory capacity limits and is highly predictive of indi-

vidual differences in working-memory capacity (Figure 2B; Vogel

and Machizawa, 2004). The CDA has been observed in a wide

variety of task settings that are presumed to necessitate active

working-memory representations, such as visual search,

perceptual monitoring, metal rotation, and attentional tracking

(Drew et al., 2011; Emrich et al., 2009; Prime and Jolicoeur,

2010; Tsubomi et al., 2013).
38 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
Analogous sustained delay activity phenomena during work-

ing-memory tasks can also be observed in EEG/MEG oscilla-

tions in other frequencies, including the alpha (8–12 hz) and theta

(4–7 hz) frequency bands (Roux and Uhlhaas, 2014). Alpha

power changes during the retention interval are dependent

upon the current working-memory load (Jensen et al., 2002).

Indeed, alpha power has long been associated with active cogni-

tive processing in various attention and working-memory tasks,

and contemporary views of alpha suggest that it reflects the allo-

cation of spatial attention to the memoranda, as well as the sup-

pression of distracting information (Klimesch, 2012). Moreover,

van Dijk et al. (2010) have recently proposed that sustained ac-

tivity, such as the CDA, could be created from dynamic modula-

tions of the alpha frequency (8–12 hz) that are asymmetric in

nature. This means that the amplitude is modulated more in

the peaks than in the troughs of the alpha cycle. Consequently,

such modulations would survive the trial averaging procedures

used in ERPs and be revealed as a slow wave. However, while

these proposals are compelling, to date there is no direct evi-

dence indicating that these two neural metrics are isomorphic

or if they reflect distinct measures of working-memory activity.

Sustained Brain Activity during Working-Memory

Maintenance

Since its discovery in the early 1970’s, sustained activity during

delayed-response tasks in PFC and posterior regions has been

suggested as a hallmark for short-term maintenance of informa-

tion (Fuster and Alexander, 1971; Goldman-Rakic, 1995). More-

over, item-specific information was suggested to be coded

through such persistent activity, in that a sub-set of PFC neurons

were specifically activated throughout delay periods for partic-

ular spatial positions to be remembered (Funahashi et al.,

1989). Recent single-neuron recordings in the PFC of monkeys

have demonstrated that PFC neurons can have ‘‘mixed selec-

tivity’’ in that they code for both task- and item-related informa-

tion (Rigotti et al., 2013). Sustained activity has also been

recorded in inferotemporal cortex (Fuster and Jervey, 1981;

Miller et al., 1993), and in a recent fMRI experiment item-specific

working-memory representations were reliably ‘‘read out’’ using

multivariate pattern analysis in sensory regions, but not in frontal

or parietal regions (see Postle, 2015). Thus, item-specific infor-

mation may be more readily discernible in posterior regions,

but may still be part of the information maintained by PFC activ-

ity, albeit in a more complex, higher-dimensional form.

It has been noted that the sustained activity of item-specific

cells is often relatively dynamic throughout delay periods, in

that they display a range of activity profiles across time (Shafi

et al., 2007). Moreover, population coding in PFC neurons have

been shown to transition between several representational

states during a delayed paired-associates task (Stokes et al.,

2013). By using multivariate pattern analysis and retro-cues to

indicate which of two items that was going to be task-relevant,

Lewis-Peacock et al. (2012) demonstrated that pattern classifi-

cation performance dropped to chance level for items not in

the current focus of attention during a delay, but rose to

above-chance level when later cued during the same delay

interval (see LaRocque et al., 2013 for similar results using

EEG). Together, these findings indicate that stable persistent

activity may not be necessary for working memory. Accordingly,



Figure 3. Development and Working Memory
(A) Working-memory performance is stable according to cross-sectional analyses from the 20’s to late 50’s, after which time a linear decrease is seen.
(B) Younger adults show higher upregulation of frontal cortex activity when working-memory demands increase (‘‘manipulation’’).
(C) By contrast, older adults show elevated prefrontal recruitment during working-memory maintenance.
(D) Older adults also tend to show a flatter prefrontal load-dependent response than do younger adults, especially high-performing younger adults.
(E) Genetic variation (COMT val/met) modulates the load-dependent prefrontal response in a similar way as aging.
(A)–(C) and (E) come from Nyberg et al (2014), and (D) comes from Nyberg et al. (2009).
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alternative coding mechanisms have been suggested (see the

sub-section Neural Network Models of Working Memory).

Plasticity: Lifespan Development and Learning
Lifespan Changes

As discussed above in the context of individual differences,

working memory is characterized as being a capacity-limited

memory system. Several studies suggest that it takes quite

some time for individuals to develop full working-memory capac-

ity. Gathercole et al. (2004) examined a large group of children

between 4 and 15 years of age, and cross-sectional analyses re-

vealed, across several working-memory measures, an approxi-

mately linear increase from 4 to 14 years that leveled off between

14 and 15 years. Similarly, in a longitudinal study of healthy chil-

dren and adolescents, performance on a visuospatial working-

memory task was found to markedly increase from 6 to about

15 years, leveling off thereafter between 15 and 22 (Ullman

et al., 2014). Analyses of structural and functional MRI data

further revealed that whereas cortical activity in the frontal and

parietal lobes were predictive of current working-memory ca-

pacity, future capacity could be inferred from structure and activ-

ity in basal ganglia and thalamus.

There is relatively little data on adult lifespan changes in work-

ingmemory, and longitudinal data are particularly scarce. Cross-

sectional data from the SwedishBetula study (Figure 3A) indicate
stability in working-memory performance between 20 to 50

years and thereafter an apparent linear decline from ages 55–

60 to 75–80 years (Nyberg et al., 2014). That study also

compared age-related differences on a simpler maintenance

task (hold four letters for 3,500 ms) with a more complex work-

ing-memory task that required both manipulation and mainte-

nance (mentally go to the next position in the alphabet for two

visually presented letters and maintain the result of that opera-

tion in working memory). It was found that age differences

were more pronounced on the more complex task, and in partic-

ular the older (75–80 years) had difficulty with this task. Analyses

of fMRI data revealed that older adults showed a weaker in-

crease than younger adults in BOLD signal in DLPFC during

manipulation relative to maintenance (Figure 3B). In fact, older

adults engaged the DLPFC to a higher degree during the mainte-

nance task (Figure 3C), suggesting a lower frontal cortex effi-

ciency (Nyberg et al., 2014). Correspondingly, some previous

studies have suggested that older adults show maximal frontal

and parietal BOLD responses at lower levels of working-memory

task complexity relative to younger adults (Callicott et al., 1999;

Nagel et al., 2009; Nyberg et al., 2009). For example, when per-

forming the n-back task with 1-, 2-, and 3-back levels, DLPFC

and parietal cortical activity is increased from 1- to 2-back and

then levels of or decreases from 2- to 3-back (Figure 3D) for older

adults unless they are very high-performing (Nagel et al., 2009).
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 39



Figure 4. Plasticity and Working Memory
(A) Five weeks of working-memory training strengthened letter-memory performance for both younger and older adults.
(B andC) Such training is associatedwith dopamine D2 binding potential in the basal ganglia (B) andwith striatal activity changes (C). (A) and (C) come fromDahlin
et al. (2008b), and (B) is from Bäckman et al. (2011).
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Age-related changes in dopaminergic neurotransmission sys-

tems have been stressed (Bäckman et al., 2006) and might ac-

count for the apparent alterations in working-memory capacity

in younger and older age. Indeed, examination of variation in

the Val158Met COMT gene in relation to working-memory manip-

ulation and maintenance revealed a strikingly similar pattern as

the age-comparative study (Nyberg et al., 2014). As illustrated

in Figure 3E, COMT val carriers, with lower synaptic dopamine

levels in prefrontal cortex, showed the strongest DLPFC BOLD

response during the easier maintenance condition but the weak-

est during the more complex manipulation task. By contrast,

COMTmet carriers showed the strongest upregulation of DLPFC

response as a function of task complexity, with an intermediate

response for val/met heterozygotes. The similarity in DLPFC acti-

vation profiles in aging and as a function of COMT status sup-

ports a link between dopamine and DLPFC efficiency (see also

Mier et al., 2010), and convergeswith primate data that have sug-

gested a role of dopamine in working memory (e.g., Wang et al.,

2004; for a review see Bäckman et al., 2006). More generally, and

consistent with the present process-component framework

(cf. Figure 1), a crucial role of fronto-striatal circuits and dopa-

mine might, at least in part, reflect the critical role of attention in

working memory (cf. LaHoste et al., 1996; Nieoullon, 2002).

Is It Possible to StrengthenWorkingMemory byDirected

Training?

Traditionally, as noted above, individual differences in working

memory have been seen as highly stable over time and consid-

ered as a core cognitive trait of an individual. Yet, in recent years,

a number of studies have examined training-related changes of

working memory, and the findings show that working memory

can indeed be improved by certain training programs

(Figure 4A) and that such training is associated with cortical

and sub-cortical activation changes as measured with fMRI

(Dahlin et al., 2009; Klingberg, 2010). Also, positron-emission-

tomography -based studies of the dopamine D1 and D2 systems

have observed training-related changes in cortical D1 receptors

(McNab et al., 2009) and in striatal D2 binding (Figure 4B; Bäck-

man et al., 2011).

Arguably, the issue that has attracted most interest in the

context of training of working memory is the degree to which
40 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
such training may transfer to untrained working-memory tasks

or even beyond (e.g., to increased long-term memory, intelli-

gence, or reduction of ADHD symptoms). Transfer after work-

ing-memory training has been observed in behavioral (Harrison

et al., 2013; Klingberg et al., 2002) and brain-imaging (Olesen

et al., 2004) studies, and it was reported that demanding work-

ing-memory training may even transfer to improve fluid intelli-

gence (Jaeggi et al., 2008). The results of other studies have

called into question the possibility of obtaining broad transfer

after working-memory training (Redick et al., 2013; Thompson

et al., 2013; see Shipstead et al., 2012), and a large-scale study

of more than 11,000 participants indicated that this may be the

case for cognitive or brain training in general (Owen et al., 2010).

In our training studies we have focused on updating of infor-

mation in working memory (Dahlin et al., 2008a). Before and after

5 weeks of computerized updating training, fMRI was used to

assess training-related changes in brain activity. Three different

tasks were scanned; a letter memory updating task (the criterion

task) and two transfer tasks: n-back working memory and

Stroop. All three tasks were expected to engage executive con-

trol processes and fronto-parietal circuits, and our fMRI findings

supported this prediction. Additionally, the letter-memory task

and the n-back task were expected to involve updating (Miyake

et al., 2000) and engage the striatum (O’Reilly, 2006), whereas

the Stroop inhibition task was not. Again, the fMRI results

confirmed this prediction. Thus, to the degree that transfer was

based on a shared fronto-parietal network, letter memory

training should transfer to both n-back and Stroop. By contrast,

if transfer wasmore restricted and based on the striatal-updating

network, it would be seen for n-back only. The findings sup-

ported the latter prediction by showing a highly selective behav-

ioral transfer effect to n-back along with a training-related

modulation of the fMRI signal in the striatum (Figure 4C).

Thus, these and related (Dahlin et al., 2008b) findings support

the notion that transfer is highly restrictive and depend on

the transfer task taxing the same basic process as is strength-

ened by the intervention. This notion of process specificity as

a basis for transfer is well in agreement with the current pro-

cessing component framework. Still, it remains an exciting pos-

sibility that some forms of working-memory training, possibly by
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enhancing attention, can transfer more broadly within working

memory (e.g., Brehmer et al., 2012; Harrison et al., 2013), and

even to general cognitive domains, such as fluid intelligence

(see Au et al., 2015), and to reduce inattention in daily life

(Spencer-Smith and Klingberg, 2015).

Models of Working Memory
One of the most influential working-memory models is Baddeley

and Hitch (1974)’s multi-store model. A key feature in this

model—and one that continues to be a basic feature in all

models of working memory (including the current component

processes description)—is that working memory emerges from

the interaction of several cognitive elements. The multi-store

model includes a ‘‘central executive’’ that controls and coordi-

nates information flow in and out of dedicated working memory

stores (the phonological loop, the visuospatial sketchpad, and

the episodic buffer; see Baddeley, 2012 for a recent overview).

Based foremost on neuropsychological dissociations (Scoville

and Milner, 1957; Shallice and Warrington, 1970), the working-

memory content currently ‘‘in’’ working memory was suggested

to be confined to such dedicated buffers and thus separate from

LTM, althoughworkingmemory-LTM interactions are also a core

feature of the model. Neurophysiological findings support a sep-

aration of executive and storage mechanisms, and of verbal and

visuospatial storage (see the sub-section Brain Areas and Con-

nections), but also show that the regional activity related to

working-memory content overlaps with regions involved with

perception and LTM of the same content, suggesting a common

location for working memory, LTM, and perceptual processes

(Lewis-Peacock and Postle, 2008). Furthermore, the MTLs

seem to be important for working memory during longer delays,

high load, and novel associations, and the PFC is involved in

both working memory and LTM, which contradicts the assump-

tion of distinctness between working memory and LTM (Ranga-

nath and Blumenfeld, 2005).

More recent models of working memory are, for the most part,

consistent with the multi-store model developed by Baddeley

(2012), but they tend to elaborate on particular aspects of work-

ing-memory processing and assume that working-memory rep-

resentations overlap with perceptual and LTM representations

(Cowan, 2008; D’Esposito and Postle, 2015; Fuster, 2009;

Jonides et al., 2008; McElree, 2006; Oberauer, 2005). Accord-

ingly, such ‘‘state-based’’ models postulate, as we do, that the

content of working memory is defined by perceptual and LTM

representations being in a particular state of accessibility, largely

maintained by persistent neural activity controlled by attentional

processes. However, based on empirical findings (see the

sub-section Sustained Brain Activity during Working-Memory

Maintenance) and computational simulations (see below), repre-

sentations outside the current focus of attention can also be

considered key working-memory elements.

State-based models differ in terms of how many states of

accessibility working-memory content can be in, but generally

describe a state of focused attention and one or more states of

‘‘activated LTM’’ (aLTM), that are less accessible than attended

representations but more accessible than LTM representations

in general (Cowan, 2008; McElree, 2006; Oberauer, 2005). Criti-

cally, while attentional processes generally determine working-
memory capacity limits (either by how much information that

can be attended simultaneously, or how recently a representa-

tion was attended), aLTM representations remain ‘‘in’’ working

memory by virtue of the (relatively) increased state of accessi-

bility. This conjecture is supported by findings that if a sub-set

of the working memory items is deprioritized by attentional pro-

cesses, they nonetheless cause an intrusion effect (slower

response times) if probed within a few seconds (Oberauer,

2005). Also, if a list of items is held in working memory, the

asymptotic accuracy decreases monotonically as a function of

the position it had in the list, with the last item having highest ac-

curacy. However, response times are uniform across items in the

list, except for the last item, indicating a unique state for the last

(attended) item (McElree, 2006). Interestingly, multivariate neu-

roimaging studies suggest that aLTM might not be active, but

rather be latent short-term representations (LaRocque et al.,

2013; Lewis-Peacock et al., 2012). Mechanisms other than sus-

tained neural activity may thus contribute to the short-term

retention of non-attended working-memory content.

Neural Network Models of Working Memory

Several different computational models at the neural network

level have been proposed. Most of the recent models concern

working-memory maintenance. This type of model is still far

from explaining all behavioral observations, but it has a critical

role in connecting the computational level and conceptual the-

ories to neural networks connected by plastic synapses. Early

computational models were mainly of a connectionist type, i.e.,

composed of non-spiking abstract neural units, whereas most

later models have been spiking neural network models and

have focused on the primary role of the PFC in working memory.

The neural mechanisms suggested have been either persistent

activity or fast synaptic plasticity, or variants and combinations

thereof. The currently prevailing view of the neural mechanisms

underlying working memory is based on persistent activity in a

recurrent network with fixed connectivity in the PFC.

Working-Memory Models Based on Persistent Activity

It has long been suggested that elevated persistent activity of

neurons in the prefrontal cortex is a primary mechanism behind

the storage of items in working memory (see above). An early

influencial computational model of working memory is the non-

spiking network developed by O’Reilly et al. (1999). Working-

memory maintenance based on persistent activity has also

been studied in several spiking attractor memory network

models (e.g., Compte et al., 2000). A challenge for the persistent

activity working-memory model is how to support multiple-item

working memory. The strong lateral inhibition between memory

representations causes a winner-take-all dynamics that typically

leaves only the winning representation active. Nevertheless,

specific network architecture and tuning can achieve a balance

that allows for a few simultaneously active items in working

memory (Macoveanu et al., 2006). Another challenge is the

contrast between the quite unstable intra-trial persistent activity

observed experimentally and the very stable persistent activity

displayed by such models (Shafi et al., 2007). In fact, this kind

of simulated memory is easily erased by a brief dip in the persis-

tent activity, which is inconsistent with empirical findings demon-

strating that item representations can be maintained in the

absence of sustained activity during the delay (e.g., LaRocque
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 41



Box 2. Future Directions

d While there is a consensus that working memory is capac-

ity limited, we have a sparse understanding of why these

limits exist in the brain. One popular idea is that the limits

arise from difficulty in keeping multiple active representa-

tions segregated from one another in neural activity with

minimal interference. However, direct evidence for this or

other related proposals has not yet been demonstrated.

d The relationship between working memory and conscious

experience is not well understood. Is all working-memory

content always consciously experienced, and can working

memory operate on non-consciously perceived informa-

tion?

d The relationship is still unclear among more specific pro-

cesses in working memory (e.g., updating) and more

global processes (e.g., those that underlie task sets and in-

tentions). Also, it will be crucial to further consider how

motivation influences working memory.

d Can training of working memory lead to broad transfer

effects, including affecting long-term memory, fluid intelli-

gence, and academic abilities?

d Although persistent neural activity during working-memory

tasks are presumed to result from reentry through recur-

rent circuits, its precise mechanism is not known and

may involve fast plastic changes at the synaptic level.
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et al., 2013). Thus, there is reason to look for alternative or com-

plementary mechanisms and explanations for working memory.

A different possible working-memory mechanism, which also

addresses the issue of working-memory capacity limits, is that

objects in working memory are represented by synchronized

firing at the gamma frequency across populations of cells coding

for the various features of the object (color, shape, position, etc.;

Jensen and Lisman, 1996). The capacity limit of workingmemory

emerges because there is a finite amount of phase space avail-

able within a theta cycle to keep multiple items active and sepa-

rated. Though some experimental support exists (Siegel et al.,

2009), the robustness of this mechanism remains to be demon-

strated by means of computational models.

Working-Memory Models Based on Fast Synaptic

Plasticity

The possibility that working memory could also rely on fast

induced and expressed synaptic plasticity has been proposed

several times in the past (e.g., O’Reilly et al., 1999; see Barak

and Tsodyks, 2014; D’Esposito and Postle, 2015). The hypothe-

sized mechanisms are closely related to those behind LTM,

where Hebbian synaptic plasticity (LTP/LTD) is assumed to

play a key role. Working memory requires fast expressing and

volatile synaptic changes, whereas LTM traces develop slower

and lead to long-term stable connectivity. Memory readout in

such a network is manifested as persistent activity, but with a

duration limited to a few hundred milliseconds, terminated by

cellular adaptation and synaptic depression. Since the memory

itself is encoded in the connectivity matrix and not in ongoing ac-

tivity, it is maintained even after activity terminates and can

readily be reactivated, as long as the enhanced synaptic con-
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nections remain. More recent work on synaptic working memory

includes a computational model with non-spiking units (Sand-

berg et al., 2003; see also Lansner et al., 2013). The synaptic

working-memory hypothesis has further been explored using

spiking network models with non-Hebbian synaptic plasticity

(Lundqvist et al., 2011; Mongillo et al., 2008). Working-memory

networks with fast Hebbian plasticity (Erickson et al., 2010) can

readily store novel items and associations, but the non-Hebbian

forms are limited to already established LTM representations.

Conclusions
The concept of working memory has been enormously influential

in a variety of areas and continues to be treated as a single

construct, and indeed in some cases at an even higher level,

such as ‘‘g’’ (Davies et al., 2015). While such a level of analysis

likely will be fruitful in some cases, here we have argued for a

more process-based level of analysis. We argue that the latter

approach is more likely to yield a detailed understanding of the

neural basis, cellular and systems-level, of working memory.

Moreover, a process-based approachwill lend itself more readily

to attempts at detailed simulations of brain-behavior aspects of

working-memory functioning. It may also better serve future

studies of the basis of working memory deficits in various popu-

lations, including children with learning disorders, psychiatric

populations, and various forms of age-related mnemonic defi-

cits, including Parkinson’s disease. Needless to say, the pro-

cessing component framework presented here is far from

complete, as is the mapping between component processes

and associated brain regions (Box 2). For instance, several of

the core processes we outlined in Figure 1 may themselves be

described in greater detail, and some key processes are likely

missing from the list of processes in Figure 1. Also, it has proven

challenging to identify unifying principles for the functional orga-

nization of the frontal cortex (e.g., Badre and D’Esposito, 2009;

Koechlin and Summerfield, 2007). Still, we argue that future

work should continue to refine and revise the process-based

approach.

At the systems level, working memory has been linked to most

areas of the brain. From a component processing perspective,

this is to be expected, because different processes that in

various constellations implement working memory will by exten-

sion involve many different brain regions. A higher level of

anatomic specificity is emerging for specific working-memory

processing components. For working-memory maintenance

per se, fronto-parietal cortical regions make up a core circuit,

but it remains to be examined further how such activity reflects

key maintenance processes as sustained attention and

rehearsal. Moreover, at least in part, fronto-parietal activity could

be related to more task-general processing components, such

as maintaining goals and task sets (Fuster, 2013; Miller and

Cohen, 2001).

The emerging notion of synaptic working memory puts further

emphasis on the intimate relation between working memory and

LTM (see Fiebig and Lansner, 2014; Teyler and Rudy, 2007). As

noted above, functional imaging studies of working memory

have observed enhanced activity in MTL regions, and versions

of the synaptic working-memory theory suggest that MTL activ-

ity could reflect similar Hebbian neurophysiological processes
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on an intermediate timescale between working memory and

LTM. Indeed, it remains unresolved why some acts of encoding

information into working memory may lead to durable LTM rep-

resentations and others not. Thus, a question for future research

will be to examine what fosters both fast and slow synaptic

activity.

The notion of close functional relations between working

memory and LTM has implications for work on capacity con-

straints and individual differences. Working-memory capacity

constraints predict learning difficulties also in academic settings,

and as noted above, attentional capacity may be a critical

factor that bridges working memory and complex LTM tasks

(cf. Figure 1). Indeed, individual differences in working-memory

capacity are strong predictors of retrieval success in many

LTM tasks (Cowan et al., 2005). Thus, one critical link between

these two memory systems may be the operation of the same

attentional control mechanisms to select task-relevant represen-

tations, either from the external world or from the vast landscape

of internally stored memories in LTM (Unsworth et al., 2014).

Although it is commonly held that working memory and

conscious experience are intimately linked, their relationship re-

mains unclear. Most models posit that only attended working-

memory content is consciously experienced (Baddeley, 2003;

Cowan, 2001; Fuster, 2009; McElree, 2006; Oberauer, 2005),

and working-memory content can by this view transition in and

out of conscious experience as a function of attentional deploy-

ment. However, it is difficult to measure the conscious experi-

ence of items outside the focus of attention without transitioning

them into attentional focus. An alternative is to investigate the

short-term retention of items never consciously perceived. Until

recently, the retention of non-consciously perceived information

was assumed so short-lived that the notion of non-conscious

working memory was given little consideration. However, new

findings suggest that non-conscious retention can last at least

15 s, be distractor resistant, engage the prefrontal cortex, and

depend on prospective action (Bergström and Eriksson, 2014;

Pan et al., 2014; Soto et al., 2011), which together implicate

working-memory operations (Soto and Silvanto, 2014). Whether

the retention of non-conscious representations is most accu-

rately conceptualized as working memory is still controversial

and needs further inquiry. If non-conscious working memory

indeed exists, it is critical to understand the underlying neural

mechanisms (e.g., persistent activity or synaptic plasticity),

how non-conscious and conscious working-memory processes

interact, and the range of operations that can be used on non-

conscious working-memory content, to accurately integrate

the notion of non-conscious working memory with current

working-memory models.

Not long since the introduction of the concept of working

memory and forward to this day, the ‘‘Baddeley model’’ has

had enormous influence. We argue here that continued progress

in understanding workingmemory will in no small part depend on

picking apart such over-arching descriptions into more detailed

descriptions of the component processes that together, in

various constellations, can be labeled working-memory pro-

cesses. We have highlighted information maintenance as a key

aspect of working memory and have suggested how this

process can be further analyzed into component processes
(Figure 1). We urge for refinements of this and other processing

descriptions that together can be described as the ‘‘neurocogni-

tive architecture’’ of working memory, where no doubt further

elaborated models that include biophysical details, exemplified

here with theories of synaptic working memory, will play a big

part. More generally, while we have here focused rather exclu-

sively on working memory, many features of the current

neurocognitive architecture are also applicable to most other

higher-order (‘‘executive’’) functions with a future dimension

(Fuster, 2013; Ingvar, 1985).
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