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Are resources in visual working memory allocated in a continuous or a discrete fashion? On one hand,
flexible resource models suggest that capacity is determined by a central resource pool that can be
flexibly divided such that items of greater complexity receive a larger share of resources. On the other
hand, if capacity in working memory is defined in terms of discrete storage “slots,” then observers may
be able to determine which items are assigned to a slot but not how resources are divided between stored
items. To test these predictions, the authors manipulated the relative complexity of the items to be stored
while holding the number items constant. Although mnemonic resolution declined when set size
increased (Experiment 1), resolution for a given item was unaffected by large variations in the complexity
of the other items to be stored when set size was held constant (Experiments 2–4). Thus, resources in
visual working memory are distributed in a discrete slot-based fashion, even when interitem variations
in complexity motivate an asymmetrical division of resources across items.
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Working memory holds information in a rapidly accessible and
easily updated state. Although this system is critical for virtually
all forms of online cognitive processing, it is widely acknowledged
that it is subject to a capacity limit of about three to four items
(e.g., Alvarez & Cavanagh, 2004; Cowan, 2000; Luck & Vogel,
1997; Pashler, 1988; Sperling, 1960). This limit motivates an
interest in how mnemonic resources are allocated when perfect
retention is not possible. The present research contrasts two pos-
sible models of resource allocation in visual working memory,
with a focus on the granularity with which resources are divided
between the stored items. On one hand, flexible resource models
suggest that capacity in working memory is determined by a
shared pool of resources that can be flexibly divided between
items, such that objects of greater complexity or importance re-
ceive a larger proportion of a shared pool of resources (e.g.,
Alvarez & Cavanagh, 2004; Eng, Chen, & Jiang, 2005; Wilken &
Ma, 2004). On the other hand, capacity in working memory could
be defined in terms of a limited number of discrete “slots,” each
capable of storing an individuated item (e.g., Rouder et al., 2008;
Zhang & Luck, 2008). In this case, resources might be allocated in
a discrete fashion, such that each item receives an equivalent
proportion of resources (i.e., a single slot) regardless of variations
in the priority or complexity of the items to be stored. Thus, our
goal was to test whether resources in visual working memory are
allocated in a continuous fashion that is sensitive to the relative

complexity of the items to be stored or whether resources are
distributed in a quantized fashion such that each stored item
receives an equivalent proportion of resources, regardless of vari-
ations in complexity across items.

In Experiment 1, we used a change detection procedure to
examine the relationship between the number of items to be stored
in working memory and the resolution with which each item was
represented. We found clear declines in mnemonic resolution as
the number of items in the sample display increased. Flexible
resource models provide a natural explanation for this inverse
relationship between number and resolution. As the number of
items increases, the total information load of the sample array
increases, and each item receives a smaller proportion of re-
sources; thus, mnemonic resolution declines. However, one diffi-
culty with this conclusion is that the increase in information load
is confounded with an increase in the number of items in the
display. Given that mnemonic resolution might decline solely
because more objects were represented in memory, this inverse
relationship does not discriminate between flexible resource and
slot-based models of resource allocation.

To distinguish between slot-based and flexible resource models
of resource allocation, we manipulated information load while
holding constant the number of items to be stored. In Experiments
2 and 3, we held set size at four items and manipulated total
information load by changing the proportion of complex and
simple items in the display. This design examined whether the
relative complexity of the items to be stored influences the allo-
cation of resources in working memory. If mnemonic resources are
flexibly allocated on the basis of each object’s relative complexity,
then mnemonic resolution for the tested item should decline as the
complexity of the other items increases. By contrast, if mnemonic
resources are allocated in a slot-based fashion (i.e., resolution is
determined solely by the number of objects in the sample display),
then mnemonic resolution for the tested item should not vary with
the complexity of the other items to be stored.
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Experiment 1

In Experiment 1, we used a change detection procedure to
examine whether the resolution of representations in working
memory declines as the number of stored items increases. To
obtain a behavioral measure of mnemonic resolution, we relied on
an approach that enables separate estimates of the number and
resolution of the representations in working memory (Awh, Bar-
ton, & Vogel 2007). Thus, we begin with a brief description of the
prior work. The Awh et al. (2007) study tested the hypothesis that
the maximum number of items that can be stored in working
memory declines as object complexity increases. Alvarez and
Cavanagh (2004) provided support for this hypothesis by showing
a near-perfect inverse relationship between object complexity and
change detection performance, such that accuracy declined as
complexity increased. They concluded that fewer objects can be
maintained in working memory when complexity is high. Awh et
al. (2007) replicated this empirical pattern but raised the possibility
that change detection accuracy declined with complex stimuli
because of errors in detecting relatively small changes rather than
because of a reduction in the number of items in memory. Two
findings supported this hypothesis. First, object complexity and
interitem similarity corresponded closely, in line with the hypoth-
esis that comparison errors were more likely with complex items.
Second, when sample–test similarity was reduced and comparison
errors were minimized, change detection performance was equiv-
alent for simple and complex objects. These findings suggest that
visual working memory represents a fixed number of items, re-
gardless of complexity.

A key point for the present research is that the change detection
procedure may measure completely different aspects of memory
ability, depending on the size of the changes that have to be
detected. When the changes are large and comparison errors are
minimized, this procedure provides a relatively pure estimate of
the number of items that can be maintained in working memory
(Pashler, 1988). By contrast, when the changes are relatively
small, change detection performance may also be limited by the
resolution of representations in memory, given that higher resolu-
tion is required to detect smaller changes. An analysis of the
individual differences in the Awh et al. (2007) study supported this
interpretation by revealing a two-factor model of performance.
Change detection accuracy was tightly correlated across the
number-limited (i.e., large-change) conditions, and performance
was also correlated across the resolution-limited (i.e., small-
change) conditions, showing that these measures were reliable
indexes of ability. However, performance in the number-limited
conditions did not correlate with performance in the resolution-
limited conditions. Thus, Awh et al. (2007) suggested that number
and resolution represent distinct facets of memory ability.

Following Awh et al. (2007), in the present research we mea-
sured the effect of set size in a procedure that provided separate
measures of performance under number-limited (i.e., large-
change) and resolution-limited (i.e., small-change) conditions. To
anticipate the results, accuracy in the resolution-limited condition
declined as set size increased. This result falls in line with earlier
studies that measured memory performance as a function of set
size (e.g., Ericksen & Lappin, 1967; Palmer, 1990; Reicher, 1969).
For example, Palmer (1990) measured the precision with which
observers could remember the length of line segments over a brief

delay, while manipulating set size from one to four items. He
found that the length threshold difference—the amount of change
in length needed to achieve a criterion level of performance—
doubled when set size increased from one to four items. The
inverse relationship between memory performance and set size is
consistent with the hypothesis that mnemonic resolution declines
as set size increases. However, this empirical pattern alone does
not establish this point because increased errors with larger set
sizes could be caused by a higher incidence of storage failures (i.e.,
items that are never encoded into working memory) instead of a
reduction in the resolution of representations in memory. Thus, to
analyze the data from Experiment 1 we used performance in a
number-limited condition to estimate the frequency of errors re-
sulting from a failure to store the critical item (missing-slot trials).
This estimate of missing slots enabled a more precise estimate of
how often changes were missed even when the critical item was
stored. Using the incidence of such comparison errors as an oper-
ational definition of mnemonic resolution, we examined whether
resolution in working memory declined as set size increased.

Method

Participants. Thirteen participants received course credit for 1
hr of participation in Experiment 1. Participants’ age ranged from
18 to 30, and all had normal or corrected-to-normal vision.

Stimuli. The stimuli were shaded cubes and Chinese characters
adapted from Alvarez and Cavanaugh (2004). Each object fit
snugly into a square region that subtended approximately 2.0° �
2.0° of visual angle from a viewing distance of approximately 60
cm. On each trial, two or four objects were presented in randomly
selected positions, with the restriction that no more than one object
could appear in each quadrant of a light gray square region
subtending 16.5° � 16.5° of visual angle.

Procedure. The sequence of events in a single trial is illus-
trated in Figure 1. Each trial began with the onset of a light gray
square region with a central fixation point, in which stimuli could
be presented. After 1,092 ms, two or four objects appeared for 500
ms, randomly selected with replacement from both categories,
with the constraint that no object could appear more than twice. A
1,000-ms delay period followed, after which a single probe object
was presented and remained visible until the participant pressed
the z key to indicate “same” or the slash key to indicate “different.”
In 5 of every 11 change trials, the probe object was selected from
the same category as the test object (within-category changes, such
as a cube changing into a cube). In the remaining 6 change trials,
the test item was from a different category than the sample item

Figure 1. The sequence of events in a single trial of Experiment 1.
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(cross-category changes, such as a Chinese character changing into
a cube). Responses were unspeeded, with instructions placing high
priority on accuracy. Each participant completed eight blocks of 48
trials, with trial order randomized within each block. Each block
included 24 instances of each category and set size, and changes
occurred with probability 0.5.

Results and Discussion

Awh et al. (2007) found that performance in the cross-category
condition provides an estimate of the number of items each indi-
vidual can maintain, whereas performance in the within-category
condition is limited by mnemonic resolution. Thus, we performed
separate analyses for cross-category and within-category trials. In
each case, change trial data were analyzed in combination with a
common set of no-change trials, so that response bias (i.e., a bias
toward either change or no-change responses) could be taken into
account.

We note that response bias can be influenced by the difficulty of
target detection. For example, in a block of trials in which all the
changes are very large, observers might adopt a more conservative
response threshold, leading to higher accuracy in the no-change trials.
Thus, in a design in which large and small changes are blocked, it
would be inappropriate to compare accuracy in the change trials
across these conditions because differences in response thresholds
could lead to differences in accuracy that are not related to mne-
monic resolution per se. This raises the question of whether we
have obscured such differences between the within-category and
cross-category conditions by using a common set of no-change
trials to measure performance. On the contrary, we reasoned that
randomly intermixing the within-category and cross-category trials
ensured that a common response threshold was in place during
no-change trials. Because both cross-category and within-category
changes were possible, observers had to respond to no-change
trials using a common response threshold. The random intermixing
of these conditions therefore ensured that differences in the detec-
tion of cross-category and within-category changes were not an
artifact of differences in response bias.

We assessed accuracy in the within-category change trials and
same trials with a three-way analysis of variance (ANOVA) that
included the factors set size (two or four), object type (shaded
cubes or Chinese characters), and trial type (same or different). We
found a significant main effect of object type, driven by better
performance with Chinese characters (M � 0.82) than with shaded
cubes (M � 0.72), F(1, 12) � 39.68, p � .001, �2 � .07. There
was a significant main effect of trial type, F(1, 12) � 25.35, p �
.001, �2 � .24, such that participants performed better on same
trials (M � 0.86) than on different trials (M � 0.68). We also
found a significant main effect of array size, F(1, 12) � 45.22, p �
.001, �2 � .16, showing that performance was better with an array
size of two (M � 0.85) than with an array size of four (M � 0.69).
Finally, there was a significant interaction of trial type and object
type, F(1, 12) � 28.8, p � .001, �2 � .08, because accuracy in
different trials was worse for cubes (M � 0.55) than for characters
(M � 0.74), whereas accuracy in same trials was equal for the two
types of objects (M � 0.86 for both cubes and characters).

To summarize the results from the within-category and no-
change trials, we replicated the findings of Alvarez and Cavanagh
(2004), who observed better performance with Chinese characters

than with shaded cubes. In addition, we found a clear effect of set
size; performance in the two-item condition was 16% higher than
in the four-item condition. Given that performance in the within-
category condition is resolution limited (Awh et al., 2007), these
data are consistent with the conclusion that resolution declines as
set size increases. As we have noted, however, errors in this task
can also occur because of a failure to store the critical item in
memory. Thus, it is necessary to take into account the probability
that each item was encoded into memory to reach a firm conclu-
sion regarding the relationship between mnemonic resolution and
set size. We return to this point after our discussion of the results
from the cross-category trials.

We analyzed accuracy in the cross-category change trials and
no-change trials by means of a three-way ANOVA with the factors
set size (two or four), object type (shaded cubes or Chinese
characters), and trial type (same or different). There was a signif-
icant main effect of array size, F(1, 12) � 19.51, p � .001, �2 �
.11, such that accuracy was higher for a set size of two (M � 0.94)
than for a set size of four (M � 0.88). There was a significant main
effect of trial type, F(1, 12) � 24.09, p � .001, �2 � .19, such that
accuracy was higher with different trials (M � 0.96) than with
same trials (M � 0.86). In line with Awh et al. (2007), change
detection in the cross-category trials was equivalent for Chinese
characters (M � 0.87) and cubes (M � 0.89), so that there was no
significant effect of object type, F(1, 12) � 0.64, p � .44. Finally,
there was a significant interaction of trial type and array size, F(1,
12) � 15.95, p � .002, �2 � .05, reflecting the fact that in the set
size two condition accuracy was similar for same trials (M � .92)
and different trials (M � .96), whereas in the set size 4 condition
accuracy was lower for same trials (M � 0.80) than for different
trials (M � 0.95).

To summarize the results from the cross-category and no-
change trials, the cross-category condition replicated the findings
of Awh et al. (2007), who found that minimizing sample–test
similarity with cross-category changes led to equivalent change
detection performance with cubes and Chinese characters. Using
the formula developed by Pashler (1988) and refined by Cowan
(2000)1 to examine performance in the cross-category condition,
we obtained capacity estimates (K) of 3.0 for both the cubes and
the characters in the four-item condition (in which ceiling effects
were less of a concern than in the two-item condition).

The primary purpose of Experiment 1 was to examine the
relationship between set size and mnemonic resolution. As we
have noted, performance in the within-category condition is lim-
ited by mnemonic resolution because this condition requires the
detection of small changes between similar items. Nevertheless,
errors can also arise in the within-category condition because of a
failure to represent the critical item in memory; moreover, such
errors resulting from “missing slots” would be more likely in the
four-item condition than in the two-item condition. To correct for
the influence of missing slots, we used performance in the cross-
category condition to estimate the number of items that each
participant could hold in memory. This in turn provided an estimate
of how often each participant made errors resulting from missing slots
in the within-category condition. Given an estimate of errors result-

1 Where k is the number of items stored, k � set size � (hit rate – false
alarm rate).
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ing from missing slots, we were able to obtain a relatively pure
estimate of how often comparison errors occurred—our opera-
tional definition of mnemonic resolution—even when the critical
item was stored in working memory.

Assuming that 500 ms is enough time to fully encode these
objects (see Alvarez & Cavanagh, 2004), accuracy (Acc) in the
within-category condition should be equal to the probability that
the object actually was encoded into working memory (Pmem,
where Pmem � k/set size, and k is estimated using the cross-
category and no-change trials) multiplied by the probability that
the sample and test are compared correctly (C), plus a correction
for guessing based on the assumption that participants would guess
correctly half of the time when the object was not stored.

Acc � �Pmem � C) � (1 � Pmem)/2.

Solving for C,

C � [Acc � (1 � Pmem)/2]/(Pmem).

This formula provides an estimate of the probability of correct
comparison during the within-category condition, while correcting
for errors that occur as a result of items that were not stored. Given
that participants were making unspeeded responses to a single
probe item, we reasoned that the primary source of comparison
errors in the within-category condition was the limited resolution
of the stored memories. Thus, we used C as our operational
definition of mnemonic resolution.

The results of this analysis are illustrated in Figure 2. We
performed a two-way ANOVA on estimates of C from each
observer, with the factors array size (two or four) and object type
(cubes or characters). We found a significant main effect of object
type, F(1, 12) � 27.14, p � .001, �2 � .24, such that correct
comparison was less likely for cubes (C � 0.75) than for Chinese
characters (C � 0.89), in line with the higher sample–test simi-
larity in the cube condition (Awh et al., 2007). There was also a
significant main effect of array size, F(1, 12) � 19.34, p � .001,
�2 � .19, such that correct comparison was less likely for an array
size of four (C � 0.76) than for an array size of two (C � 0.88).
Thus, mnemonic resolution declined as the number of stored items
increased.

Experiment 2

The results of Experiment 1 make the important point that
mnemonic resolution declines as set size increases. However, as

we noted earlier, the decline in mnemonic resolution when set
size increased from two to four does not discriminate between
flexible resource and slot-based models of resource allocation.
The effect of set size could be explained either by increased
information load or by the increased number of objects to be
stored. To test whether information load per se influences
mnemonic resolution, it is necessary to avoid confounding
information load with the number of stored objects. Thus, in
Experiments 2– 4 we manipulated object complexity while
holding constant the number of objects in the sample display. In
Experiments 2 and 3, we used the same Chinese characters and
cubes (adapted from Alvarez & Cavanagh, 2004) as in Exper-
iment 1, with a constant set size of four items. If the cubes are
assumed to be more complex than the characters, then the total
information load of a display will increase as the proportion of
cubes in the display increases. Thus, by manipulating the pro-
portion of cubes and characters in these four-item displays, we
were able to examine how mnemonic resolution for a given item
was affected by the total information load in the sample display.
To further generalize this result, Experiment 4 replicated Ex-
periments 2 and 3 using a new set of stimuli and a different
procedure for measuring the clarity of the stored representa-
tions. To reiterate, flexible resource models predict that mne-
monic resolution for a given item should decline as the total
information load in the sample display increases because more
resources should be allocated to more complex items. By con-
trast, slot-based models of resource allocation suggest that
mnemonic resolution for a given item is determined solely by
the number of items to be stored, without regard to those items’
relative complexity.

Method

Participants. Sixteen participants were paid $8 for 1 hr of
participation in Experiment 2, with the same constraints as in
Experiment 1.

Stimuli. The stimuli were identical to those used in Experi-
ment 1, except that set size was held constant at four items and
sample–test comparisons were always within category (i.e., cubes
always changed into cubes and characters always changed into
characters).

Procedure. The procedure was the same as Experiment 1,
except that the objects in the sample display contained either four
of the same type of object (uniform, with four cubes or four
characters) or two of each type of object (mixed, with two cubes
and two characters).

Results and Discussion

We did not manipulate set size in this experiment. Thus, even
though some errors in this task were likely the result of missing
slots, we used raw accuracy in change detection to test whether
mnemonic resolution was influenced by object complexity. The
logic of this analysis therefore relied on past observations that the
number of items maintained in working memory does not vary
with the complexity of the items in the sample display (e.g., Awh

Figure 2. Mnemonic resolution, C, in Experiment 1 as a function of
object category and set size.
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et al., 2007; Scolari, Vogel, & Awh, 2008).2 The data were
analyzed with a three-way ANOVA including object type (shaded
cubes or Chinese characters), trial type (same or different), and
array type (uniform or mixed). We found a significant main effect
of object type, F(1, 15) � 70.65, p � .001, �2 � .18, such that
change detection was less accurate with shaded cubes (M � 0.65)
than with Chinese characters (M � 0.77). There was a significant
main effect of trial type, F(1, 15) � 16.82, p � .001, �2 � .16,
such that accuracy on same trials (M � 0.77) was higher than on
different trials (M � 0.65). There was also a significant interaction
between trial type and array type, F(1, 15) � 22.83, p � .001,
�2 � .06, because accuracy during same trials was higher for
mixed trials (M � 0.80) than for uniform trials (M � 0.74),
whereas accuracy during different trials was higher for uniform
trials (M � 0.69) than for mixed trials (M � 0.61). There was also
a significant interaction between object type and trial type, such
that accuracy on different trials was lower for cubes (M � 0.63)
than for characters (M � 0.78), F(1, 15) � 11.98, p � .01, �2 �
.04. Finally, the critical result in this experiment is that there was
no significant effect of array type, F(1, 16) � 0.35, p � .57, and
no interaction of array type and object type, F(1, 15) � 1.4, p �
.25, suggesting that resolution-limited performance with a given
object (cube or character) was not affected by the complexity of
the other items in the display.

Recall that flexible resource models suggest that a common pool
of resources is allocated between objects, with a higher proportion
of resources given to more complex objects. From this perspective,
change detection with a Chinese character should be better in the
uniform condition (when the character is presented with three
other characters) than in the mixed condition (when the character
is presented with one additional character and two cubes) because
total information load is smallest in the uniform condition. In fact,
change detection with Chinese characters was equivalent in the
uniform (M � 0.77) and the mixed (M � 0.78) conditions, t(15) �
0.74, p � .47 (see Figure 3). Likewise, change detection with
cubes was equivalent in the uniform (M � 0.66) and the mixed
(M � 0.63) conditions, t(15) � 1.1, p � .28, even though total
information load was highest in the uniform condition. These data
are inconsistent with the hypothesis that more resources are allo-
cated to more complex objects. Although we replicated previous
observations that change detection is more difficult with more
complex objects, the resources allocated to a given object were
unaffected by the complexity of the other items in the sample
array.

Experiment 3

In Experiment 2, the sample arrays were presented for 500 ms.
This duration should have provided ample time for encoding the
four sample items.3 It is possible, however, that flexible resource
allocation requires more time than stimulus encoding alone. In this
case, 500 ms may not have provided enough time to allow for
flexible allocation of mnemonic resources across the four items in
the sample array. In Experiment 3, we attempted to address this
possibility by presenting the objects sequentially (375-ms presen-
tations with a 125-ms interstimulus interval for a total presentation
period of 1,875 ms) to provide ample time for flexibly allocating
resources across the four items in the sample display. In addition,
the mixed displays in Experiment 3 contained three of one object
type and one of the other object type (i.e., three cubes and one
character or one cube and three characters) so that there was a
larger variation in total information load across the different ex-
perimental conditions.

Method

Participants. Seventeen participants were paid $8 for 1 hr of
participation in Experiment 3, with the same constraints as Exper-
iments 1 and 2.

Stimuli. The stimuli were identical to those used in Experi-
ment 2.

Procedure. The procedure was identical to Experiment 2, ex-
cept that the stimuli were presented sequentially for 375 ms each
with a 125-ms interstimulus interval (1,875-ms total presentation
period) and the objects presented contained either four of the same
type of object (uniform) or one of one type and three of the other
(mixed). The tested item was randomly selected on each trial, with
cubes and characters tested equally often.

Results and Discussion

We analyzed the data by means of a three-way ANOVA
including the factors object type (shaded cubes or Chinese
characters), trial type (same or different), and display type
(uniform, one cube and three characters, or three cubes and one

2 Awh et al (2007) provided a direct comparison between capacity
estimates for the same Chinese characters and shaded cubes as those in the
current experiment. When sample–test similarity was minimized by using
cross-category changes, capacity estimates were equivalent for homoge-
neous arrays of cubes and Chinese characters and at the same level as for
simple colored squares. Scolari et al. (2008) came to the same conclusion
by comparing cross-category change detection with the shaded cubes
intermixed with face stimuli and change detection with simple colors; here
again, capacity estimates were equivalent when large changes minimized
comparison errors.

3 For example, Alvarez and Cavanagh (2004) measured change de-
tection with displays that contained up to 15 of these shaded cubes and
found that accuracy did not differ between exposure durations of 450
and 800 ms. This suggests that 500 ms is enough time to encode four of
these cubes.

Figure 3. Change detection accuracy in Experiment 2 as a function of
object category and display type.
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character).4 The results are illustrated in Figure 4. Replicating
Alvarez and Cavanagh (2004), we found a significant main
effect of object type, F(1, 16) � 30.36, p � .001, �2 � .06, such
that change detection was worse with shaded cubes (M � 0.65)
than with Chinese characters (M � 0.78). There was an inter-
action between object type and trial type, F(1, 16) � 11.88, p �
.01, �2 � .06, because the difference between cube and char-
acter accuracy was larger for different trials (.18) than for same
trials (no difference). It is important that Experiment 3 repli-
cated the findings from Experiment 2 in finding no reliable
difference between performance for uniform and mixed arrays,
F(2, 32) � 1.81, p � .18, and no interaction between object
type and array type, F(2, 32) � 1.15, p � .33.5

To summarize Experiment 3’s results, we replicated those of
Experiment 2 while providing more time for the possibility of
flexible resource allocation and a stronger variation in total infor-
mation load across the uniform and mixed conditions. In both
Experiments 2 and 3, significant variations in total information
load had no influence on mnemonic resolution for the tested item.

Recall that it was uncertain whether increased set size or object
complexity explained the inverse relationship between set size and
resolution observed in Experiment 1. Experiments 2 and 3 ad-
dressed this ambiguity by holding set size constant and demon-
strating that mnemonic resolution was unaffected by large varia-
tions in the average complexity of the stored items. Thus, taken
together, Experiments 1–3 suggest that set size and not total
information load determines resolution in visual working memory.
This suggests that resources in visual working memory are allo-
cated in a discrete fashion, such that observers can choose which
items are assigned to slots but are not able to bias how resources
are divided between the items in memory.

Experiments 4a and 4b

Our interpretation of Experiments 2 and 3 relies on the assump-
tion that shaded cubes are more complex than Chinese characters.
However, given that object complexity (as defined by search
efficiency in the Alvarez & Cavanagh [2004] study) covaried with
interitem similarity (Awh et al., 2007) and interitem similarity can
influence search efficiency (Duncan & Humphreys, 1989), there is
room for doubt regarding the relative complexity of these stimuli.
Thus, we attempted to replicate the results of Experiments 2 and 3
using stimuli whose relative complexity was unambiguous. In
Experiment 4b, observers were presented with displays containing

oriented teardrop stimuli and simple or complex grids (see
Figure 5). The complex grids were created by randomly filling 16
of 25 cells within a 5 � 5 matrix. The simple grids were created
by randomly filling in 2 of 4 cells within a 2 � 2 matrix. Although
we cannot offer a comprehensive definition of visual complexity,
we reasoned that virtually any convincing definition of complexity
would indicate that the 5 � 5 grids are more complex than the 2 �
2 grids.

According to a slot-based model of resource allocation, mne-
monic resolution for the teardrop stimuli should be unaffected by
the relative complexity of the grids present in a display. The
interpretation of such a null result, however, relies on the assump-
tion that these teardrop and grid stimuli compete for resources
within a common working memory system. To verify this assump-
tion, Experiment 4a tested whether mnemonic resolution for one of
these stimuli declined when an object from the other category was
added to the sample array. Because demonstrating a set size effect
did not require a manipulation of grid complexity, we used only
the simple grids for Experiment 4a.

Method

Participants. Nine participants were given course credit for a
1-hr experimental session.

Stimuli. Two types of stimuli were presented. There were
teardrop stimuli (illustrated in Figure 5) that varied in orientation
only. The teardrops subtended 3.0° � 1.5° of visual angle and
could appear in 36 possible orientations (starting at vertical and
evenly spaced 10° apart). In addition, there were simple grids that
were created by randomly selecting and filling two of the cells in
a 2 � 2 grid. These grids subtended 3° � 3° of visual angle from
a viewing distance of approximately 60 cm. Either one or two
objects were presented in each trial, with each object appearing in
a separate (randomly selected) quadrant of the display (with the
center of each object at 4.7° of eccentricity).

Procedure. Instead of using the same change detection proce-
dure, we used a procedure described by Eng et al. (2005) in which
observers indicated which of two possible probe objects matched
one of the objects in the sample display. This procedure had the
virtue of allowing us to manipulate the precision of the required

4 The sequential presentations used in this study raise the question of
whether there were effects of ordinal position. Indeed, a separate analysis
revealed a reliable recency effect, with higher change detection accuracy
for items that appeared in the third and fourth positions (76%) than for
those that appeared in the first or second positions (67%; p � .01). If this
were because of true increases in mnemonic resolution for the third and
fourth items, it would contradict the slot-based model’s prediction that
resources are equally divided between all stored items. However, this
recency effect could also be explained by an increased probability that the
third and fourth items were stored, rather than by changes in mnemonic
resolution. Thus, because serial position effects were not diagnostic with
respect to primary theoretical question, our main analysis collapsed across
ordinal position.

5 Because the cubes and characters were tested equally often, there was
a higher probability of testing the “singleton” item than of the majority
items in the heterogeneous displays. If participants were aware of this bias,
they could treat singleton status as a cue to pay more attention to that
object. However, no evidence of bias toward the singleton objects was
found with either cube or character probes.

Figure 4. Change detection accuracy in Experiment 3 as a function of
object category and display type.
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judgment on every trial (instead of only during change trials) by
controlling the size of the difference between the original object
and the mismatched object.

Each trial began with the onset of a fixation point in the center
of a light gray screen. After 1,000 ms, one teardrop, one grid, or
one of each stimulus was presented for 200 ms. This exposure
duration was chosen to preclude eye movements during the en-
coding phase of the trial. Each object occupied a separate and
randomly selected quadrant in the display. A 1,000-ms delay
period followed, after which two probe objects of the same type as
one of the originally presented objects appeared on either side of
the original object’s location (3° to the right and left of the original
position). The probe objects remained visible until the participant
pressed the z or the slash key to indicate that the left or right probe
object was the same as the original.

In two item displays, each object was equally likely to be tested
in the probe display. When the teardrop was the probed object, the
orientation of the mismatched teardrop was 20°, 40°, or 80°
different from the original teardrop. When a simple grid was
probed, one of the two filled cells was repositioned in the mis-
matched grid. Each participant completed four blocks of 72 trials,
with trial order randomized within each block. Within each block,
a set size of one or two was equally likely (36 trials each). Within
a set size of two, teardrops and grids were equally likely to be
tested (18 trials each). When teardrops were tested, each change
size was tested equally often (six trials each for changes of 20°,
40°, and 80°).

Results and Discussion

We analyzed accuracy with the teardrops (illustrated in Figure 6)
by means of a two-way ANOVA that included the factors set size
(one teardrop alone vs. one teardrop stored with one simple grid)
and the size of the mismatch between the original and the mis-
matched probe (20°, 40°, or 80°). There was a clear set size effect,
with higher accuracy when one teardrop was stored alone (M �
0.90) than when one teardrop was stored with one simple grid
(M � 0.80), F(1, 18) � 10.0, p � .02, �2 � .10. In addition, we
observed the expected effect of change size, with better perfor-
mance at larger change sizes (Ms � 0.74, 0.91, and 0.91 for the
20°, 40°, and 80° changes, respectively), F(2, 16) � 32.0, p �
.001, �2 � .32. Accuracy with the simple grids also showed a
significant set size effect, with higher accuracy when one simple
grid was stored alone (M � 0.98) than when one simple grid was
stored with a teardrop (M � 0.91), t(8) � 4.9, p � .001. These set

size effects demonstrate that the teardrop and grid stimuli compete
for representation in a common working memory system.

Experiment 4b

Experiment 4b tested the effect of changing grid complexity on
mnemonic resolution for the orientation of the teardrops. Each
display in Experiment 4b contained two grids (either simple or
complex) and one teardrop. If a larger proportion of mnemonic
resources are allocated to more complex objects, then the teardrop
should be remembered more precisely when it is presented with
the simple grids because more resources should be left over for the
teardrop. By contrast, if resources are allocated in a discrete
slot-based fashion, then mnemonic resolution for the teardrop
should not be influenced by the complexity of the other items in
the sample array.

Method

Participants. Fourteen participants were given course credit
for 1 hr of participation.

Stimuli. The stimuli in Experiment 4b were the same teardrops
and grids used in Experiment 4a, except that complex grids were
used in addition to the simple grids. The complex grids were
created by randomly selecting and filling 16 of the 25 cells in a
5 � 5 grid. When the tested item was a complex grid, the mismatched
grid was created by randomly repositioning 3 of the 16 filled cells
within the 5 � 5 grid. The overall size of the complex grids was
identical to that of the simple grids (i.e., cell size was smaller in the
complex grids). Each display contained one teardrop and two grids
of the same complexity. Finally, we used an exposure duration of
500 ms to preclude encoding-limited performance with these more
complex sample displays.

Procedure. The procedure was identical to that used in Experi-
ment 4a, except for the composition of the sample displays that now
contained three objects instead of two. From each block of 72 trials,
the teardrops were equally likely to be presented with the simple and
complex grids (36 trials each). Each of the three items in the sample
display was equally likely to be tested during the 72-trial block,
leading to 24 teardrop trials, 24 simple grid trials, and 24 complex grid
trials per block. For the 24 teardrop trials, 8 trials were used to test
each of the three change sizes (20°, 40°, and 80° offsets).

Results and Discussion

Recall that the flexible resource and slot-based models of resource
allocation made different predictions regarding the effect of grid

Figure 5. The sequence of events in a single trial of Experiment 4b.

Figure 6. Accuracy with teardrop probes in Experiment 4a as a function
of orientation offset and whether a grid also had to be stored.
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complexity on performance with the teardrops. The predictions for
performance with the grids, however, do not differ between these
models because both predict that change detection will be worse with
the complex grids because of higher sample–test similarity (Awh et al,
2007). Thus, we conducted separate analyses of accuracy with the
teardrops and the grids. A paired t test of the grid trials showed that
accuracy was higher with the simple grids (M � 0.70) than with the
complex grids (M � 0.57), t(13) � 4.4, p � .001 (see Figure 7). This
complexity effect replicates the results of Alvarez and Cavanagh
(2004) and supports the face validity of our manipulation. The key
analysis, however, focused on whether performance with the tear-
drops was affected by grid complexity.

We analyzed accuracy with the teardrop stimuli (illustrated in
Figure 8) with a two-way ANOVA that included the factors
complexity (high or low) and the size of the mismatch between
the original and the mismatched probe (20°, 40°, or 80°). There
was a main effect of mismatch size, F(2, 26) � 4.95, p � .05,
�2 � .08, with monotonic increases in accuracy as the size of
the mismatch increased. The monotonic relationship between
the size of the mismatch and accuracy shows that performance
was limited by observers’ ability to discriminate between the
relatively similar pair of probes in the test phase of the trial. The
key finding, however, was that accuracy with the teardrops
showed no main effect of complexity, F(1, 13) � 3.10, p � .10,
and no interaction of complexity and mismatch size, F(2, 26) �
0.78, p � .47. Indeed, the nonsignificant effect of complexity in
this experiment went in the opposite direction from the predic-
tions of the flexible resource model, with numerically lower
accuracy in the simple grid condition (M � 0.68) than in the
complex grid condition (M � 0.71). Thus, contrary to the
predictions of the flexible resource model, we found no evi-
dence that mnemonic resources were biased toward items of
higher complexity. If this had happened, then teardrop perfor-
mance should have benefited from more resources in the simple
grid condition. Instead, resolution-limited performance with
these teardrops was equivalent when they were stored with
simple and complex grids. Thus, despite the strong influence
that the number of objects has on mnemonic resolution (Exper-
iment 1), Experiments 2– 4 suggest that the precision of a given
object’s representation in working memory is not influenced by
the complexity of the other items to be stored.

General Discussion

We attempted to distinguish between two models of resource
allocation in visual working memory. On one hand, flexible re-

source models suggest that this process is sensitive to the relative
complexity of the items to be stored in working memory, such that
more complex items receive a larger share of resources. On the
other hand, slot-based models of resource allocation suggest a
more rigid allocation strategy, in which each item’s share of
resources depends only on the number of objects to be stored. In
Experiment 1, we used a change detection procedure to examine
the relationship between mnemonic resolution and the number of
items in the sample display. Using an analytic approach that
corrected for failures to store the critical item, we found clear
drops in mnemonic resolution as the number of items in the sample
display increased. This result made the important point that mne-
monic resolution declines as set size increases, suggesting that
fewer mnemonic resources are available for each item as the
number of items increases. However, because set size was con-
founded with total information load, the inverse relationship be-
tween set size and resolution does not distinguish between flexible
resource and slot-based models of resource allocation.

Thus, Experiments 2–4 examined conditions in which it was clear
that these models make different predictions. Specifically, flexible
resource models predict that the complexity of a given item deter-
mines the proportion of resources that are allocated to that item.
Therefore, flexible resource models predict that when the number of
items to be stored is held constant, the resources that are granted to a
specific item should decline as the complexity of the other items
increases. Across three different experiments and two different sets of
stimuli, this prediction was disconfirmed. In each case, observers’
ability to carry out resolution-limited judgments for a critical item was
unaffected by changes in the average complexity of the other items
that had to be stored. This null effect of complexity contrasts with the
effect of set size found in Experiment 1 (and Experiment 4a), in which
clear declines in mnemonic resolution were observed as set size
increased. Thus, we conclude that resources in visual working mem-
ory are distributed in a discrete, slot-based fashion, such that the
resources devoted to a single item are determined by the number of
objects that must be retained.

This slot-based model of resource allocation is consistent with
recent findings from Zhang and Luck (2008). Using a procedure that
provided independent estimates of the number and resolution of the
representations in working memory, they found evidence for a high-
threshold model of memory in which a small subset of the available
items are maintained while no information is retained about other
items. Directly relevant to the present findings, they examined
whether observers could use a precue to bias resource allocation
across the stored items. Specifically, a precue indicated which of fourFigure 7. Accuracy with simple and complex grids in Experiment 4b.

Figure 8. Accuracy with teardrop stimuli as a function of angular offset
and the complexity of the grids within the same sample display.
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items was most likely to be probed at the end of the trial. The rationale
was that observers should—if possible—devote the largest share of
resources to the cued items, leaving less available for the other items;
this should lead to higher resolution for the cued item relative to the
others. Instead, the results showed that although cued items were
more likely to be encoded into memory, the resolution of those
representations was unaffected by the cues. Thus, although our results
showed that resources are not asymmetrically distributed when there
are large variations in complexity across items, the Zhang and Luck
(2008) findings suggest that informative precues affected only which
objects were encoded rather than the precision with which those items
were stored. The present findings as well as those of Zhang and Luck
(2008) contradict the predictions of the flexible resource model,
which suggests that observers should be able to flexibly allocate a
larger proportion of resources to items of higher priority or greater
complexity.

We have suggested that resources are allocated in a slot-based
fashion, such that mnemonic resolution is determined only by the
number of items that are stored in working memory. This sugges-
tion, however, leaves open questions about how slot-based re-
source allocation is implemented. Zhang and Luck (2008) offered
a more detailed hypothesis for why mnemonic resources are quan-
tized at the level of objects. Specifically, these authors proposed a
slot-averaging model, according to which multiple slots can be
assigned to a single item when the number of stored items is
smaller than the number of available storage slots in working
memory. In this case, small improvements in mnemonic resolution
are predicted for subspan set sizes because of the benefits of
redundant representation. Thus, the slot-averaging model explains
why mnemonic resolution decreases as set size increases, because
larger set sizes preclude using multiple slots for a single item.
Moreover, the slot-averaging model provides a natural explanation
for why mnemonic resolution for a given item is not affected by
the complexity of other items. Specifically, if the slots themselves
are the basic units of mnemonic resources, then it is clear why
resources cannot be redistributed in a more fine-grained fashion
when one object has higher priority or higher complexity.

Recall that Awh et al. (2007) found that there was no correlation
between the number of items that an individual could store and the
resolution of those representations. This result suggests that num-
ber and resolution may represent distinct aspects of memory abil-
ity. This conclusion corroborated the findings of Xu and Chun
(2006), who found that distinct neural regions were sensitive to the
maximum number (inferior intraparietal sulcus) and the complex-
ity (superior intraparietal sulcus and lateral occipital regions) of
the items that were held in working memory. At first glance, the
proposed dichotomy between number and resolution may appear
to conflict with the results of the present experiments, in which we
have argued that there is an inverse relationship between the
number of items that must be stored and the resolution with which
they are stored. We suggest that a single account can integrate both
conclusions. Specifically, even if there is no relationship between
the maximum number of items an individual can hold and the
resolution of each memory representation, this does not preclude
the possibility that resolution drops as the number of items in
memory increases. Thus, our working hypothesis is that there is an

average slot limit of about three to four items, with each slot
capable of representing one item regardless of the complexity of
that item (Awh et al., 2007). The number of items to be memorized
in turn determines the availability of a separate resource that
determines mnemonic resolution. The present results suggest that
this resource is allocated without regard to the relative complexity
of the items to be remembered. Instead, the resources that deter-
mine mnemonic resolution are allocated in a discrete slot-based
fashion, so that set size and not total information load determines
the clarity of each representation in memory.
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