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Working memory needs pointers 
Highlights 
Within cognitive neuroscience, the defini-
tion of storage in working memory (WM) 
has focused on the cognitive accessibility 
of the stored representations and the 
stimulus-specific neural patterns that 
track them. We argue that this definition 
may be incomplete. 

We propose a refined definition that 
acknowledges the fundamental need to 
track entities through time and space 
Edward Awh 1 , * and Edward K. Vogel1 

Cognitive neuroscience has converged on a definition of working memory (WM) 
as a capacity-limited system that maintains highly accessible representations via 
stimulus-specific neural patterns. We argue that this standard definition may be 
incomplete. We highlight the fundamental need to recognize specific instances 
or tokens and to bind those tokens to the surrounding context. We propose 
that contextual binding is supported by spatiotemporal ‘pointers’ and that 
pointers are the source of neural signals that track the number of stored items, 
independent of their content. These content-independent pointers may provide 
a productive perspective for understanding item-based capacity limits in WM 
and the role of WM as a gateway for long-term storage. 
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and to bind those representations to 
the surrounding context. In line with 
past theories, we postulate the operation 
of a spatiotemporal ‘pointer’ system that 
enables this tracking process. 

This pointer operation may be the basis 
of neural signals that track the number 
of individuated items stored in WM 
while generalizing across variations in 
both the type and number of visual 
features stored. Limits on the number of 
pointers that can be deployed may help 
to explain why capacity in WM is item-
based rather than determined by infor-
mation load.
A gap in the standard definition of WM 
WM is an online memory system that is a core component of intelligent behavior. Individual 
differences in WM capacity predict a wide range of cognitive abilities, including fluid intelligence, 
scholastic achievement, and attentional control [1–4]. Nevertheless, we highlight a fundamental 
question regarding our definition of WM storage. What are the necessary and sufficient conditions 
for concluding that an item is stored in WM? A consensus on this basic question will be essential to 
determine the neural mechanisms for storage and to understand how and when WM capacity 
limits will affect performance. We highlight a critical facet of WM storage: the binding of item repre-
sentations to the surrounding event context. This contextual binding, sometimes referred to as 
‘tokenization’ [5,6], involves the spatiotemporal tracking of discrete items through an ongoing 
event. Although the importance of this operation has been elucidated both in prominent models 
of memory [6–10] and in theories of dynamic visual cognition [11,12], most neural studies of WM 
storage have focused primarily on stimulus-specific activity patterns (e.g., [12–14]) that may be 
functionally dissociated from item-based binding signals. Moreover, many cognitive and neural 
models have argued that capacity in WM is limited entirely by content-based interference 
[15–17], without considering whether binding is a limiting factor. Thus, careful consideration of 
the distinction between the representation of each item’s content and the binding of those repre-
sentations to context may reveal distinct classes of storage-related neural activity [9,18–20], one of 
which may underlie item-based or ‘chunk-based’ limits in WM performance [21–26]. 

Defining basic constructs such as WM is challenging. Thus, the literature has offered a wide 
variety of definitions that differ in important ways [27]. Nevertheless, three specific cognitive and 
neural assumptions feature in virtually all accounts within cognitive neuroscience. First, this 
memory system is strongly capacity-limited. Although there is debate regarding the specific rea-
sons for limited capacity in WM [17,28], it is clear that there are sharp limits on concurrent storage 
in WM. Second, cognitive theories emphasize the heightened accessibility of WMs [29]. This idea 
of online availability motivates the view that WM is critical for complex cognition such as mental 
arithmetic or problem solving. Finally, a third facet of the modal definition was prompted by 
early observations of stimulus-specific neural activity that tracks the content of items stored in 
WM [13]. These item-specific neural traces index the identity [30] or location [31] of behaviorally 
relevant items, even during blank delay periods when the items are no longer physically present.
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These observations, plus a wide variety of conceptual replications [e.g., 24–27], have established 
stimulus-specific neural patterns as the dominant operational definition of WM storage within 
the neuroscience literature. Thus, although recent work has challenged the assumption that 
WM storage requires persistent or unbroken patterns of neural activity (Box 1), stimulus-
specific neural patterns are widely regarded as a key ‘fingerprint’ of WM storage. To summarize, 
cognitive neuroscience has converged on a standard definition of WM as a capacity-limited 
system that maintains highly accessible representations of information that are represented via 
stimulus-specific neural patterns.

Challenges for the standard definition 
Although there is continued debate regarding whether WM storage is limited by the number of 
items stored [22,28] or by the total amount of information [15,17], there is a strong consensus 
that WM storage is sharply limited. Indeed, this is one of the most compelling functional differences 
between WM and long-term memory (LTM). Because any successful definition will acknowledge 
WM capacity limits, we focus our critique on the other two key features of the standard definition: 
cognitive accessibility and stimulus-specific neural activity. 

Cognitive accessibility 
The standard definition’s emphasis on heightened accessibility is motivated by the notion that 
rapid access is critical for complex cognition. But a key challenge for this as a defining feature 
of WM storage is that heightened accessibility is not unique to WM. In their seminal paper [29], 
Ericsson and Kintsch discussed the vital role of LTM in complex tasks, arguing that skilled
Box 1. Activity-silent WM 

Is persistent neural activity necessary for the retention of information in WM? Although neural activity measured with EEG and 
fMRI tracks the contents of WM and predicts individual differences in WM capacity [58,60,82], in some cases, 
temporary interruptions of these neural signals may have only minor consequences for later access to the stored information 
[83,84]. Although it is sometimes difficult to tell when all neural signals have been interrupted [85], such results have motivated 
the hypothesis that WM storage can be accomplished via rapid changes in the synaptic connectivity, without requiring 
persistent spiking activity within the cellular assemblies that represent stored information [86,87]. This phenomenon has been 
labeled ‘activity-silent’ WM. 

An alternative to activity-silent WM is that observers offload information into episodic LTM and then retrieve that information 
when it is required [88–90]. This could explain how observers maintain cognitive access to those memories without 
postulating activity-silent WM storage. Although most extant work cannot rule out this possibility, a recent study showed that 
under conditions known to interrupt neurally active signatures of WM storage, observers could still maintain about four 
memory representations that were resistant to proactive interference (PI) [91]. Given that both capacity limits and resistance 
to PI are key functional signatures of WM storage, these findings lend further support to the possibility of activity-silent WM. 
This may appear at odds with the central thesis of this review. After all, we are postulating that spatiotemporal pointers – 
indexed by neurally active patterns of EEG activity – are a defining feature of WM storage. Can these ideas be reconciled? 
One possible reconciliation is that the neural pointer operation that we are highlighting may be essential for ‘short-term consol-
idation’ (STC), the process of transitioning between an initial sensory representation and more durable storage in WM [92,93]. 
Indeed, ‘durable storage’ is operationally defined by resistance to masking and interference from subsequent stimuli, and these 
properties of consolidated memories depend on a precise index of the time and place of encoding. Past estimates of the time 
needed for STC vary widely, from hundreds of milliseconds to well over 1 s [92,93], in line with the latency and duration of neural 
pointer signals. Thus, while this hypothesis still highlights an essential role for pointers during WM encoding, it allows for lingering 
accessible memory representations as long as a neurally active process of STC has completed. 

Finally, a hypothesis that preserves a link between persistent neural activity and WM storage is that memories that are resistant to 
PI may not be unique to WM. One possibility is that observers can form rapid associations in LTM with adequate contextual cues 
to resist PI [94]. Thus, even if WM storage depends on persistent neural activity, this hypothesis could explain how memories re-
sistant to PI could still be retrieved when those neural signals have been silenced. One attractive feature of this argument is that it 
preserves the common proposition that WMs are ‘in mind.’ Given that extant demonstrations of activity-silent WM have all in-
volved disengagement of attention from the stored items, the activity-silent construct presumes a disconnect between WM stor-
age and awareness of what is stored. Thus, refining our understanding of the boundaries between WM and LTM will be crucial for 
the effort to understand the role of neurally active representations in WM.
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performance often relies on highly efficient access to information stored in LTM rather than WM. 
Although earlier theorists had presumed that LTM storage and retrieval were too slow to serve 
such a computational role, the efficiency of these operations was typically measured using 
novel sequences of arbitrarily associated materials. Although this approach helps to control for 
uncontrolled influences of past knowledge and skill with the memory materials, it fails to acknowl-
edge the transformational importance of past knowledge and skill with the memory materials! 
Thus, with sufficient expertise, people exhibit rapid access to far more information than can be 
maintained in WM alone. For example, chess experts can apprehend and subsequently retrieve 
complex chess positions far more rapidly than traditional LTM experiments suggest. Likewise, 
prolonged training enabled a dedicated subject to increase his digit span performance from 
around seven to more than 80 digits [32], a feat that relied on rapid LTM access of specific con-
figurations of digit stimuli. Thus, LTM can be highly accessible – that is, working – when subjects 
have sufficient experience with the formation and retrieval of memories from a specific domain.

In line with this observation, recent work highlights how LTM can be a powerful guiding force for 
various ‘online’ tasks such as visual search [33,34] or the selection of targets among distractors 
[35]. On the one hand, these demonstrations have elucidated the constant interplay between 
WM and LTM. On the other hand, they show that heightened accessibility does not suffice as a 
defining feature for storage in WM. 

Stimulus-specific neural activity 
Measurements of stimulus-specific activity provided a key advance in our understanding of how 
WM is enacted in the human brain [36–39]. Reconstruction of stimulus identities on the basis of 
neural activity increases confidence that this activity supports the WM representation itself rather 
than other task-related but non-mnemonic processes. That said, stimulus-specific patterns of 
neural activity may not be sufficient to conclude that an item has been encoded into WM. This 
possibility is underscored by various demonstrations of late selection, the selection of items to 
be encoded – or rejected – from WM after stimulus identification [40–43]. For example, past 
work measured the relative speeds of ‘perceiving a scene’ versus ‘remembering a scene’ by 
presenting subjects with rapid serial visual presentations (RSVPs) of real-world scenes at different 
speeds [44]. Recognition memory performance was poor even for the slower (i.e., 333 ms) 
presentation rates. However, target detection performance was very good even for the faster 
presentation rates (e.g., 167 ms). Thus, the processes involved in ‘perceiving a scene’ are 
much faster than those needed to successfully store those scenes in memory. 

Results such as this demonstrate  that extensive perceptual processing – including determining the 
‘gist’ of a scene – can occur despite the subject having poor access to those items in memory. In 
fact, recent work with macaque monkeys viewing RSVP streams found that they could decode 
the identity of each stimulus in the sequence using the local field potentials in the prefrontal cortex 
even when the presentation rate was 10 items per second [45]. Likewise, electroencephalogram 
(EEG) studies with humans have revealed category and stimulus-specific patterns of neural activity 
evoked from RSVP streams with up to a 20-Hz presentation rate [46], even though memory 
encoding at such speeds is very poor. These are not simply low-level neural patterns reflecting 
precategorical sensory activity. For example, magnetoencephalography recordings show that 
the long-term memorability of an irrelevant scene (presented during a task in which observers 
were searching for faces) can be decoded within about 150 ms of stimulus onset in an ultrafast 
RSVP display (34 ms/item) [47]. Although this neural signature of memorability was sustained across 
four or five subsequent image presentations in the RSVP stream, observers had no memory of 
distractor scenes even after 30 repetitions. These findings show that intrinsic memorability – a rela-
tively high-level property of a visual item – can be robustly encoded without storing that item in WM.
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Finally, although seminal neural studies of WM focused on spatially specific signals  that  were
sustained across a blank delay period [31], there is growing evidence that such signals can be 
generated without encoding into WM. For example, when observers are instructed to direct 
covert attention toward varying numbers of locations, sustained spatially specific signatures of  
attention are observed in the absence of well-established neural signatures of WM storage [48]. 
Thus, spatial attention and WM gating may represent distinct facets of attentional control, a 
dichotomy that highlights important boundaries for our definition of the pointer construct 
(Box 2). Moreover, these findings provide another clear example of sustained stimulus-specific 
neural patterns without storage in WM. 
Box 2. Content-independent pointers and spatial attention: distinct forms of attentional control 

Our emphasis on how pointers mediate spatiotemporal tracking raises important questions about the relationship be-
tween pointers and covert spatial attention. Although we have argued that pointer assignment may enable the binding 
of items to context, there are long-standing claims that spatial attention may mediate binding [95–97]. Moreover, there 
is substantial evidence that spatial attention is actively deployed during storage in visual WM [38,98] and that attention-
based rehearsal enhances WM storage [99,100]. These findings notwithstanding, recent work has suggested a clear dis-
sociation between the deployment of covert spatial attention and the encoding of items into WM. For instance, while a ro-
bust, set-size dependent CDA is observed when observers are asked to remember the locations of two or four simple 
objects, the CDA is largely absent when observers instead direct spatial attention to two or four locations in anticipation 
of an upcoming target item [48]. This implies that WM encoding (measured by the CDA) is not obligated when attention 
is directed toward an empty region of space, even though this cueing task required precise memory for the cued positions 
across a blank delay period. Thus, neural signals indexing encoding into WM are tracking a process that goes beyond the 
deployment of covert spatial attention (and the maintenance of information per se). 

Another recent study that reveals a dissociation between spatial attention and WM storage [19] compared EEG signatures 
of spatial attention and WM storage using ‘dot cloud’ stimuli that afforded independent manipulations of the number of 
items stored and the breadth of covert spatial attention within the display (Figure I). Variations in the size of the attended 
regions were precisely tracked by spatially specific alpha activity. These changes in attentional breadth, however, had 
no impact on a robust multivariate measure of the number of items encoded into WM. At the same time, variations in 
the number of individuated items stored in WM had no effect on alpha measures of the locus and breadth of covert 
attention. Thus, distinct neural patterns track spatial attention and WM storage, and separate factors modulate these 
disparate neural signals. Finally, neural signals tracking spatial attention and WM storage explain distinct variance in WM 
performance [101], and they have different time courses for their response to irrelevant onsets [84]. Thus, while there is 
clearly a tight collaboration between covert spatial attention and WM storage [98,102,103], they are dissociable aspects 
of attentional control that likely have separable computational roles in memory. 
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Figure I. Independent manipulation of spatial 
attention and pointer deployment. Observers 
stored the position and shape of all presented 
dot clouds. Because the clouds could overlap 
with minimal interference, the design afforded 
independent manipulation of the breadth of spatial 
attention and the number of items stored in 
working memory.
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We are not arguing that stimulus-specific neural activity is unimportant for storage in WM. To the 
contrary, this class of neural activity is likely essential for online memories. Nevertheless, we have 
highlighted various cases in which stimulus-specific neural patterns can be observed even when 
the stimulus has not been encoded into WM. Thus, stimulus-specific activity is necessary but not 
sufficient to hold items in an online state in WM. 

Content-independent pointers 
We have argued that cognitive accessibility and stimulus-specific neural representations may be 
necessary but not sufficient to conclude that an item has been encoded into WM. What is the missing 
ingredient in the standard definition? Here, we propose that contextual binding, the registration of an 
item’s representation to the surrounding event context, may be a defining feature of WM storage [6,7]. 
This argument draws support from the discovery of neural signals that track the number of items 
stored in WM, independent of the specific features contained within the stored items. We propose 
that these signals reflect the deployment of content-independent pointers that support the contextual 
binding of stored items and serve as a springboard for the creation of episodic memories. 

The need for abstract indexing 
Long-standing theories of dynamic visual cognition [11,12] have noted that perception and action 
depend critically on the observer’s ability to continuously track selected items through time and 
space. In turn, continuous tracking requires an indexing operation that will be robust even 
when the visible properties of tracked items change over time (e.g., due to changes in lighting, 
viewing angle). Thus, ‘object files’ [12] were proposed as a mechanism for registering specific 
items or tokens [5,49] in the  visual  field and forming a continuous episodic representation of 
those items within the surrounding event. Likewise, ‘fingers of instantiation’ (FINSTs) were pro-
posed to describe the process of indexing or ‘pointing at’ relevant tokens in a scene, enabling 
them to be tracked through space and time despite changes in appearance or spatial position 
[11]. Thus, both object files and FINSTs refer to a spatiotemporal ‘pointer’ operation that tracks 
tokens through time and space, even when the visible properties of the tracked items are unsta-
ble. Critically, both theories also acknowledge a distinction between the indexing operation 
supported by pointers and the maintenance of the featural details associated with each token. 
This is why pointer deployment is sometimes described as an ‘abstract indexing’ operation. 
Here, there is a useful analogy between content-independent pointers and demonstrative 
words such as ‘this’ or ‘that’ [11]; demonstrative words hold no meaning by themselves, but 
they serve to refer to other words. Likewise, pointers may refer to specific tokens in a visual 
scene, while parallel but distinct operations maintain the contents of those items. 

Neural evidence for content-independent pointers 
We argue that pointers support an item-based indexing operation that is independent from the 
maintenance of featural content. Thus, the neural signature of pointer deployment should remain 
stable despite strong variations in the types of visual features stored or in the number of features 
contained within the stored items. Indeed, multiple studies have documented neural activity that 
tracks the number of individuated items stored in WM, independent of the featural content of 
those items [18,19,50–56]. For example, EEG recordings show that storing visual items in WM 
yields a sustained negative slow wave in posterior electrodes that increases in amplitude with 
each additional item stored [50]. This contralateral delay activity (CDA) plateaus at a set size of 
about three items, in line with behavioral estimates of WM capacity for visual items [21–24,57], 
and the shape of the CDA function across set sizes is a robust predictor of individual differences 
in WM capacity [58]. Importantly, the link between CDA amplitude and set size appears to be 
independent of the number of features stored from each object [59], suggesting that this neural 
signal tracks the number of individuated items stored rather than the content of those items.
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More recently, we have shown that multivariate analysis of EEG activity enables robust decoding 
of the number of items stored in WM, even at the single-trial level [19,20,55,60]. In line with CDA 
findings, this multivariate signature of WM load tracks the number of items stored, independent of 
the content of those memories. For example, neural signatures of WM load generalize across 
memory conditions that vary in terms of both the type (e.g., color, orientation, motion coherence) 
and number (one versus two) of relevant features contained in each item [20,55]. Moreover, when 
multiple items are perceptually grouped, the decoded load matches the number of perceived 
items, not the number of attended positions or elements [55,61]. At the same time, these studies 
also found clear evidence for feature-specific neural activity that tracked the features stored in 
WM [20,55], verifying that observers selectively stored different features across conditions. But, 
critically, these feature-specific responses explain distinct variance in ongoing EEG activity com-
pared with the content-independent signals that track pointer deployment [19,20]. Thus, we are 
not denying the role of stimulus-specific activity in WM storage. Instead, we are highlighting the 
existence of a separate class of neural signals that tracks item-based load but not content. 

fMRI studies have also identified content-independent load signals. For example, past work 
has shown that activity in the inferior parietal cortex tracks the number of items stored in visual 
WM, regardless of the complexity of the stored items, while activity in distinct brain regions is 
sensitive to the total information load within each item [18]. Findings such as this motivated a 
‘neural object file’ account in which objects are selected and individuated during an initial 
stage of processing, followed by processing of the precise identity of the selected objects 
[9]. Our proposal embraces a similar distinction between the selection of discrete items into 
WM and parallel processing of the features contained within those items, but there are also 
important points of divergence. Although the former account portrays object selection and 
individuation as a necessary precursor to full stimulus identification, we argue – motivated by 
the late selection evidence reviewed earlier – that full stimulus identification can be completed 
for items that are never encoded into WM. Thus, content-independent load activity does not 
necessarily precede stimulus identification, and indeed load activity may not be generated at 
all for items that are identified and deemed irrelevant. 

Our proposal (Figure 1) is that these load signals reflect the deployment of content-independent 
pointers that enable the spatiotemporal tracking of the selected items. Item-based pointer 
assignment explains why these signals are indifferent to changes in both the type and number 
of visual features contained within the stored items. Our emphasis on spatiotemporal indexing 
falls in line with WM models that identify binding as a key limiting factor for storage in WM 
[6,7,62,63]. Here it is useful to distinguish between two types of binding operations. On the 
one hand, the stimulus identification typically requires binding of multiple distinct features 
(e.g., the color and shape of an object) into an item-based representation. On the other hand, it 
is also essential to bind those item-based representations to the surrounding event context. 
Our hypothesis is that pointer deployment is critical for the latter form of binding, but not for the 
binding of an object’s constituent features. In line with this, the late selection evidence described 
above has shown that multifeatured items can be fully identified without being encoded into 
WM, even though stimulus identification requires the binding of an object’s constituent features. 
Thus, we argue that pointer deployment is required specifically for the contextual binding 
of tokens, not the construction of multifeatured item representations. Moreover, we hypothesize 
that pointer assignment is a necessary step for the encoding of items into LTM (Box 3). To 
conclude, we argue that the assignment of content-independent pointers – combined with 
enhanced behavioral accessibility and the parallel encoding of stimulus-specific neural repre-
sentations – may provide a productive view of the necessary and sufficient conditions for stor-
age in visual WM.
6 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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Figure 1. The role of pointers in the formation of bound representations in working memory. The task is to store the toys and ignore the fruits. Spatial attention is 
thus deployed to all candidate objects to facilitate discrimination of targets and distractors. Rapid stimulus identification processes produce item-based representations – 
for both target and distractors – that will evoke priming and familiarity effects. Pointers are assigned to target items, enabling the formation of bound representations in 
working memory. These contextually bound representations support awareness and high confidence reports and may be required for the formation of recollective 
long-term memories. 
Pointers may explain chunk-based capacity limits in WM 
There has been persistent debate about the ‘units of storage’ in WM. On the one hand, WM ca-
pacity could be ‘chunk-based’ such that storage is limited by the total number of discrete entities 
stored [28,64]. On the other hand, WM capacity could be limited by the number of features or the 
total ‘information load’ stored in WM [17,65]. In this section, we argue that limits on pointer 
deployment may explain the evidence for chunk-based capacity limits in WM. 

Behavioral evidence for chunk-based capacity 
There are various demonstrations of chunk-based limits on WM performance. For example, WM 
performance is far better for letters that are part of meaningful words than for equal number of 
random letters, and WM performance with random words is equivalent to WM performance
Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 7
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Box 3. Pointers provide a gateway to LTM 

Assigning a pointer to an object during encoding may provide a distinctive tag that can be used to increase the probability 
of later access in both WM and LTM tasks. In this way, pointer-assigned objects could support high-threshold memory 
representations because the index itself provides source information that may aid retrieval. However, past demonstrations 
that encoding into WM can be determined after full perceptual analysis [44,104] highlight the point that items may be fully 
identified without having a pointer assigned. In these instances, stimulus-specific activity may still be sufficient to form 
some residual memory of items that do not enter WM. However, the lack of a unique spatiotemporal index would mean 
that those representations would be highly susceptible to proactive and retroactive interference from other similar items 
and would primarily contribute to mnemonic judgments that could be driven by familiarity alone. Given that PI is based 
on confusions between items encountered at different points in time, we propose that binding an item to its spatiotemporal 
context may provide the basis for resistance to PI in WM. Thus, although there is some debate on whether WM is immune 
to PI [105], our proposal that WM storage depends on pointer assignment aligns with repeated observations of minimal PI 
on representations held in WM [91,106,107]. 

The control process of pointer assignment may help illuminate the overlap between the encoding and retrieval mecha-
nisms for WM and LTM. Historically, these two memory systems were proposed to operate sequentially, with WM main-
tenance being the exclusive gateway for encoding into LTM [108]. Our view is more consistent with dual encoding models 
of memory that propose that WM and LTM encode information concurrently [10,109,110]. Here, we are specifying that the 
common encoding process between the two memory systems is the pointer allocation process. From this view, when pre-
sented with a display of many objects, a limited subset of items can have a pointer allocated. These items will be 
available for aiding immediate judgments in WM tasks and are more likely to be subsequently accessible from LTM. Items 
that receive no pointer assignment, by contrast, may not be explicitly accessible but may still impact behavioral perfor-
mance if stimulus identification was nevertheless completed. For example, letters that cannot be reported due to the 
attentional blink nonetheless yielded reliable priming of subsequent responses, even though they were apparently denied 
access to WM [111]. One possibility is that the same representations that enable priming – but not robust conscious access – 
underlie various ‘familiarity’ effects that have been argued to be distinct from recollection-based memory phenomena. This 
view aligns with a recently proposed model in which memory judgments in WM are made on the basis of a mixture of 
high-threshold representations and a general factor of memory strength [10]. 
with an equal number of prelearned word pairs [25]. Within the visual domain, a key study argued 
that storage in visual WM was limited by the number of objects stored rather than by the total 
number of features contained within those objects [57]. Although subsequent research has 
made it clear that performance declines when additional features are added to each item 
[23,63,64], it is also clear that the number of individuated objects – independent of the number 
of features within each object – is a clear limiting factor for WM performance [23,66]. Likewise, 
although some studies had suggested that increasing stimulus complexity reduces the number 
of items that can be stored [65,67], follow-up studies showed that increased memory errors 
with complex items are due to confusions between targets and lures rather than a failure to 
store the targets in WM [3,68,69]. When those confusions are minimized, behavioral data reveal 
a common capacity limit for complex and simple objects [3,68,69]. Thus, while storage of all 
features is not guaranteed, item-based limits on WM performance are well established. 

The link between late selection and chunk-based capacity limits 
We argue that chunk-based capacity limits fall in line with the evidence for late selection into WM. 
Late selection, by definition, allows complete stimulus identification – and all of the low-level 
binding and LTM retrieval that this entails – prior to encoding into memory. Thus, if pointers are 
assigned to chunks, then the perceptual processing and memory retrieval that are required to 
recognize a chunk must occur prior to pointer assignment. Accordingly, words such as ‘cat’ 
evoke an EEG load signature commensurate with a single colored square (instead of three indi-
viduated letters), despite the fact that changing any one of the word’s three letters can create 
an entirely distinct word [70]. Thus, each of the three letters could be independently identified 
without requiring a separate pointer. Likewise, visual objects can be understood as a conjunction 
of features that have been chunked into a single item by virtue of Gestalt cues such as proximity 
and collinearity. In this way, postperceptual assignment of a limited number of pointers can ex-
plain why visual WM capacity is limited by the number of individuated objects that are perceived,
8 Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx
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regardless of the number of features contained within those objects. Pointers support the contex-
tual binding of recognized items, not features. 

Here it is critical to consider how to define a ‘chunk.’ We prefer a hierarchical model of how a 
scene is parsed into items or chunks. For example, while a single word evokes a neural load 
signature commensurate with a single colored square, three random letters evoke the neural 
load associated with three colored squares [70]. In this case, associative learning enables a skilled 
reader to encode a word as a single chunk. However, this depends on the perspective that is 
required by the task at hand. If the observer were required to report the constituent letters of 
this word, it would require active retrieval of the letters from LTM [71–73] and the deployment 
of new pointers to each retrieved item. Thus, the observer’s goals and library of preexisting asso-
ciations will strongly shape how a scene is parsed into individuated chunks or items. 

Given that pointers are deployed in an item-based fashion, a pointer limit would constrain the 
number of items that could be contextually bound, regardless of the content or complexity of 
those items. Why would WM performance be dependent on contextual binding? Typical WM 
tasks employ designs that include high levels of proactive interference (PI) due to the repeated 
use of a small set of possible stimuli. Thus, it is critical for the observer to respond to a test display 
only on the basis of information from the current trial. Otherwise, PI from other trials will undermine 
performance. Accordingly, it is known that using trial-unique stimuli that minimize PI yields apparent 
capacity limits that are far higher than in typical WM procedures [74], most likely because of 
contributions from familiarity-based representations in LTM. 

This focus on contextual binding highlights an important difference between the pointer construct 
and the ‘slots’ metaphor that has often been used to illustrate the discrete character of WM 
capacity. While the concept of a ‘slot’ may be effective at illustrating how maximum storage limits 
are disconnected from the contents of each item, this metaphor lumps together the processes of 
contextual binding and the representation of stimulus-specific features. That is, the slots meta-
phor implies that slots contain the stored content rather than binding that content to the current 
context. By contrast, the pointer metaphor illustrates an abstract indexing operation that can be 
more readily distinguished from the maintenance of each item’s featural content. 

Finally, past work examining individual differences in visual WM has revealed a dissociation 
between the number of items an individual can hold in WM and the precision or fidelity of the 
stored representations [3,68]. Likewise, while perceptual expertise robustly enhances the preci-
sion of visual WM, it does not impact the number of representations that can be simultaneously 
stored [69]. These studies motivate a taxonomy of WM ability that distinguishes between the 
ability to maintain precise representations and the ability to control which representations are 
given access to WM. This taxonomy aligns with our working hypothesis that a limited number 
of content-independent pointers may determine maximum capacity limits in WM, while separate 
processes determine the fidelity of those memories. From this view, individual differences in 
apparent WM capacity may instead reflect how well one can control the assignment of pointers 
to the items in a display rather than reflecting differences in maximal storage space. This is 
well in line with current models that propose that individual differences in WM capacity reflect 
differences in attention control [75,76]. For example, individuals with low WM are known to 
have difficulty in preventing task-irrelevant items from being unnecessarily stored in WM 
[77–79]. From the current perspective, this unnecessary storage may be the consequence of 
errors in assigning pointers to the task-irrelevant items along with the task-relevant items. 
Thus, the efficiency of control over pointer deployment may be a fundamental driver of individual 
differences in WM capacity.
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Outstanding questions 
Are there distinct pointer operations for 
distinct sensory modalities? On the 
one hand, various demonstrations of 
multisensory integration suggest that 
common indices can be deployed 
to features from different sensory 
modalities. On the other hand, multiple 
studies have found minimal costs of 
concurrently storing items from different 
sensory modalities, suggesting the 
operation of distinct memory systems. 

Is the same pointer system deployed 
when information is retrieved from 
LTM? Most models of retrieval from 
LTM presume that representations 
are retrieved into WM. Does retrieval 
from LTM recruit the same pointer sys-
tem that mediates storage in WM? 

What is the functional relationship 
between spatial attention and pointer 
assignment? We have reviewed  
evidence that they reflect distinct 
aspects of  cognitive control,  but 
important questions remain about 
their interactions. For example, can 
a pointer be assigned to a spatially 
unattended item? 

What limits the maximum number of 
pointers that can be assigned at once? 
We have proposed that pointers 
support spatiotemporal indexing that 
binds items to context. Although we 
Concluding remarks 
Cognitive neuroscience has made great progress in studying how the brain generates the 
stimulus-specific neural patterns that represent content in WM. Nevertheless, we argue that it 
is important to complement those efforts with a stronger focus on the binding of item represen-
tations to the current context [6,7,63]. In line with theories of dynamic visual cognition [11,12], 
we argue that items are contextually bound via the assignment of content-independent pointers, 
while parallel processes maintain the featural details associated with those items. This proposed 
separation between contextual binding and the maintenance of content resonates with other 
models that have asserted fundamental divisions between the stimulus-specific representations 
that determine the content of one’s thoughts and abstract control processes that enable the 
manipulation and gating of those thoughts. For example, recent work has offered a ‘spatial com-
puting’ model in which control processes that support the manipulation of WM representations 
are implemented independently of the neural activity that represents the details of the stored 
items themselves [80]. Likewise, others have argued that distinct neural pathways can be identi-
fied that encode the abstract structure of items and events on the one hand and pathways that 
encode the specific content of the encoded items on the other hand [81], suggesting that this 
kind of architecture may be necessary to apply learned rules to novel content. Thus, while further 
work is needed to directly examine whether spatiotemporal tracking is the core computation that 
limits storage in visual WM (see also Outstanding questions), we are optimistic about the broad 
utility of a distinction between the control processes that gate memory and the operations that 
maintain stimulus-specific content. 
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