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ABSTRACT—Does visual working memory represent a fixed

number of objects, or is capacity reduced as object com-

plexity increases? We measured accuracy in detecting

changes between sample and test displays and found that

capacity estimates dropped as complexity increased. How-

ever, these apparent capacity reductions were strongly

correlated with increases in sample-test similarity (r 5 .97),

raising the possibility that change detection was limited by

errors in comparing the sample and test, rather than by the

number of items that were maintained in working memory.

Accordingly, when sample-test similarity was low, capac-

ity estimates for even the most complex objects were

equivalent to the estimate for the simplest objects (r 5 .88),

suggesting that visual working memory represents a fixed

number of items regardless of complexity. Finally, a cor-

relational analysis suggested a two-factor model of work-

ing memory ability, in which the number and resolution of

representations in working memory correspond to distinct

dimensions of memory ability.

Working memory enables a limited amount of information to be

maintained in an ‘‘on-line’’ or readily accessible state. Several

different paradigms have converged on the conclusion that vi-

sual working memory has a capacity limit of only about three to

four simple objects (e.g., Luck & Vogel, 1997; Pashler, 1988;

Sperling, 1960). Moreover, individual differences in working

memory capacity exhibit robust positive correlations with gen-

eral intelligence and scholastic aptitude (Cowan et al., in press).

Thus, there is strong motivation to understand the basic deter-

minants of this item limit.

Some researchers have suggested that capacity is set by the

number of objects that can be stored (e.g., Irwin, 1992; Luck &

Vogel, 1997; Vogel, Woodman, & Luck, 2001) and is indepen-

dent of the number of features within each object. Luck and

Vogel (1997) used a change-detection paradigm that required

subjects to remember a sample array of objects over a brief

retention interval and then indicate whether any item in a

subsequent test array had changed. They found that memory

capacity for objects defined by a single feature (e.g., color or

orientation) was equivalent to capacity for multifeature objects

(e.g., colored lines of varying orientations). They concluded that

capacity is determined by the number of objects, and not by the

number of features that are stored. By contrast, other researchers

have reported marked reductions in capacity as object com-

plexity increases (Alvarez & Cavanagh, 2004; Eng, Chen, &

Jiang, 2005). Using a clear operational definition of complexity

or ‘‘information load’’ (the efficiency of search for a target among

distractors from the same category), Alvarez and Cavanagh

(2004) observed monotonic reductions in capacity estimates as

complexity increased. In the present research, we attempted to

resolve this apparent contradiction.

One key assumption of these studies is that change detection

is limited solely by the number of items that are maintained in

memory, without the contribution of errors during the encoding

of the sample array or during the comparison of the test array

with the items in memory. Encoding was probably not a limiting

factor for either Luck and Vogel’s (1997) or Alvarez and Cava-

nagh’s (2004) study. In both cases, change-detection accuracy

was insensitive to relatively large changes in the exposure du-

ration of the sample array. This does not necessarily mean that

every object in the sample array was encoded, but it does suggest

that encoding was not the limiting factor for change detection.

Alvarez and Cavanagh (2004) also examined whether increased

sample-test similarity elicited errors during the comparison

stage of the task. They measured change-detection accuracy
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with upright or rotated versions of block 2s and 5s. Although the

physical similarity between 2s and 5s did not change when both

were rotated, rotation did lead to steeper search slopes and

higher estimates of information load. Moreover, capacity esti-

mates declined for the rotated stimuli, confirming Alvarez and

Cavanagh’s initial observation that information load impairs

change detection. Given that rotation did not change the phys-

ical similarity of the stimuli, they concluded that information

load influenced the number of objects that were stored rather

than the probability of comparison errors.

In the present work, we reexamined whether comparison

errors play a role in the inverse relation between capacity and

complexity. Although physical similarity was perfectly con-

trolled during rotations of the 2s and 5s in Alvarez and Cava-

nagh’s (2004) experiment, it is likely that subjective similarity

increased when the digits were rotated to less familiar orienta-

tions. In the same way, inverted faces are harder to discriminate

than upright faces, even though physical similarity is held

constant (Yin, 1969). This leaves open the possibility that in-

creases in subjective similarity caused comparison errors when

the digits were rotated even though the same number of items

were stored as when the digits were upright. Thus, our goal was

to test whether object complexity influences the number of ac-

tive representations, or ‘‘slots,’’ that are maintained in working

memory, or whether complexity influences the probability of

comparison errors.

In our first set of experiments (1a and 1b), we sought to rep-

licate Alvarez and Cavanagh’s (2004) finding of reduced change-

detection performance for complex objects and to also test

whether the subjective similarity of the objects increases along

with complexity. A strong relation between similarity and

complexity would increase the likelihood that poorer change-

detection performance for more complex items is due to errors

made when the subject compares the representations in memory

with the items presented in the test array. To further test this

hypothesis, in the second experiment, we reduced the similarity

of the complex objects to determine whether performance would

increase to the level observed for the simple objects. Such an

increase would further implicate the role of comparison errors in

reducing change-detection performance for complex objects

and, more important, would demonstrate that a fixed number of

items are represented regardless of their complexity.

EXPERIMENTS 1A AND 1B

Experiment 1a assessed change-detection performance for four

categories of objects that spanned the full range of complexity

tested by Alvarez and Cavanagh (2004). This study replicated

their finding that capacity estimates drop as object complexity

increases. Experiment 1b measured reaction times (RT) during a

one-item change-detection task. High levels of accuracy with

one-item arrays suggested that performance was not limited by

encoding or maintenance of the objects in working memory.

However, if an item presented at test is very similar to the item

held in memory, then additional time will be necessary to

compare them. Thus, we used RT as an operational definition of

similarity within each category and examined whether similarity

increases with object complexity.

Method

Subjects

Two different groups of 16 subjects received course credit for

1 hr of participation in Experiment 1a or 1b. The subjects ranged

from 18 to 30 years of age and had normal or corrected-to-normal

vision.

Stimuli

The stimuli (adapted from Alvarez & Cavanagh, 2004) included

colored squares, Chinese characters, random polygons, and

shaded cubes (see Fig. 1). The widest aspect of each object

touched the borders of a square region that subtended approx-

imately 3.31� 3.31 of visual angle. During Experiment 1a, four

or eight objects were presented in randomly selected positions

within a square region (301 per side), with the constraint that all

quadrants contained an equal number of objects, and no object

could appear within 3.3 object widths of another object. The

displays were the same for Experiment 1b, except that only one

item was presented.

Procedure

During Experiment 1a, the first trial event was the onset of a

light-gray region that demarcated the possible stimulus posi-

tions and contained a central fixation point. After 1,092 ms, four

or eight objects (randomly selected with replacement, with the

constraint that no object appeared more than twice) from one of

the four categories appeared for 500 ms, followed by a 1,000-ms

delay period. Finally, a test array of objects appeared and re-

mained visible until the subject pressed the ‘‘z’’ key to indicate

‘‘same’’ or the ‘‘/’’ key to indicate ‘‘different.’’ In half of the

test arrays, one item was replaced with another item randomly

Fig. 1. Possible objects in Experiments 1a and 1b (adapted from Alvarez
& Cavanagh, 2004).
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selected from the same category. Subjects in Experiment 1a

were instructed to place highest priority on accuracy, without

regard for speed.

The procedure was the same in Experiment 1b, except that

only one-item displays were presented, and subjects were in-

structed to respond as quickly as possible while maintaining

high accuracy. In addition, subjects were instructed to maintain

fixation so that viewing eccentricity would be roughly equated

with that in Experiment 1a (subjects did not have time to fixate

all four or eight items within the 500-ms sample display).

In Experiments 1a and 1b, each subject completed eight

blocks of 64 trials. Each block included 16 instances of each

category (8 no-change and 8 change trials). Trial order was

randomized within each block.

Results and Discussion

Accuracy during Experiment 1a declined as object complexity

(as estimated by Alvarez & Cavanagh, 2004) and array size in-

creased (see Fig. 2). A two-way analysis of variance with factors

of object type (colored squares, characters, polygons, or cubes)

and array size (four or eight) found significant main effects for

object type, F(3, 45) 5 123.2, p < .001, Zp
2 5 .99, and array

size, F(1, 15) 5 104.4, p < .001, Zp
2 5 .99, as well as a

significant interaction of these factors, F(3, 45) 5 4.1, p < .02,

Zp
2 5 .8, driven by near-floor accuracy in the polygon and cube

conditions. Memory capacity (based on the eight-item condition

because of ceiling effects with four items) for each object cat-

egory was estimated using the formula developed by Pashler

(1988) and refined by Cowan (2001). As Alvarez and Cavanagh

(2004) found, capacity estimates (k) ranged widely across

the four categories, from 4.9 for colored squares to 0.9 for

shaded cubes, with monotonic declines in accuracy as com-

plexity increased.

RTs from Experiment 1b were trimmed by removing trials in

which RT was greater than 2 standard deviations from the mean

(3%) and trials with incorrect responses (7% error rate). The RT

to detect changes in the one-item displays varied strongly across

different object types, with monotonic increases in RT as com-

plexity increased, F(3, 45) 5 36.2, p < .001, Zp
2 5 .97. Mir-

roring this effect, there were small but reliable reductions in

accuracy (M 5 93%) as complexity increased, F(3, 45) 5 15.0,

p < .001, Zp
2 5 .93. Mean accuracy was 96%, 95%, 92%, and

91% for colored squares, characters, polygons, and cubes, re-

spectively, showing that the RT differences across object types

in one-item change detection were not due to a speed-accuracy

trade-off. These accuracy differences raise the possibility that

encoding and maintenance were limiting factors in this task.

However, given the small size (5%) of these effects, we argue

that RT was primarily determined by the difficulty of discrimi-

nating the sample and test items. Thus, when similarity was

operationalized by RT in the one-item task, we found that in-

creases in complexity were associated with strong increases in

the similarity between items in that category. Note that this RT

measure of similarity was strongly predictive of inverse memory

capacity from Experiment 1a (see Fig. 3), yielding a significant

linear correlation between RT and inverse capacity, r(2) 5 .97,

p < .05, prep 5 .938, d 5 8.0.1

Experiments 1a and 1b replicated the observation that ca-

pacity estimates go down as object complexity increases (Al-

varez & Cavanagh, 2004; Eng et al., 2005). However, given the

strong association between object complexity and sample-test

similarity, reduced capacity estimates for complex objects may

have been caused by a higher incidence of comparison errors.

Experiment 2 tested whether object complexity influences the

Fig. 2. Change-detection accuracy in Experiment 1a as a function of
object type and set size.

Fig. 3. Reaction time (in milliseconds) in the one-item change-detection
task of Experiment 1b as a function of inverse memory capacity estimated
using eight-item displays. Symbols indicate the different object types
(colored squares, Chinese characters, random polygons, and shaded
cubes). Capacity, calculated using Cowan’s (2001) k, is shown next to each
symbol.

1Using inverse capacity (1 divided by k) allowed a straightforward linear
analysis, even though differences in k were compressed as similarity increased.
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number of items held in working memory or the probability of

comparison errors.

EXPERIMENT 2

If the higher information load associated with complex objects

leads to a smaller number of items stored in working memory,

then change-detection performance should be impaired even if

sample-test similarity is low. Consider the case of the shaded

cubes. Experiment 1a produced a capacity estimate of 0.9 items

for these stimuli. If only one object is represented during trials in

this condition, then even large changes in any additional

memory items should be missed. The same logic explains why

subjects fail to detect salient color changes or large changes in

visual scenes when memory capacity has been exceeded (Luck

& Vogel, 1997; Simons, 1996; Simons & Levin, 1997). By

contrast, if increased complexity causes comparison errors be-

cause of increased sample-test similarity, then the discrim-

inability of the sample and test items should affect accuracy

more than the complexity of the sample array alone.

Experiment 2 employed a single set of potential memory ob-

jects that included 6 Chinese characters and 6 shaded cubes.

Sample arrays contained randomly selected objects from this set

of 12. During change trials, one object in the array was replaced

with an item that was randomly selected from the 11 remaining

objects in the set. Thus, in 6 out of every 11 change trials, the

changed item was replaced with an item from a different cate-

gory (i.e., a cube replaced a character or a character replaced a

cube; hereafter referred to as a cross-category change). In the

remaining 5 out of every 11 change trials, the changed item was

replaced with an item from the same category (i.e., a cube re-

placed a cube or a character replaced a character; hereafter

referred to as a within-category change). We reasoned that

sample-test similarity was lower in the cross-category-change

condition than in the within-category-change condition, and

that comparison errors would be minimized in the cross-cate-

gory-change condition. Thus, if complexity influences the

number of items held in working memory, then reductions in

sample-test similarity should not improve change-detection

performance, and performance should not differ between the

cross-category-change and within-category-change conditions.

But if complexity has its influence during the comparison stage,

then performance should be better in the cross-category con-

dition than in the within-category condition, and comparable

capacity estimates should be obtained for simple and complex

objects.

Method

All aspects of Experiment 2 were the same as in Experiment 1a

with the following exceptions. The potential memory items were

taken from a combined set of six cubes and six Chinese char-

acters. In addition, we included trials with simple colors that

served as a measure of the approximate upper limit in visual

memory capacity.

So that subjects could not simply count the number of cubes

and characters in the sample array and respond ‘‘different’’ if

these totals were changed in the test array, the test array con-

tained only one object (regardless of whether four or eight ob-

jects had been presented in the sample array). Half of the time

the test object was the same as the sample item that had ap-

peared in exactly the same position, and half of the time it was

different. Subjects indicated ‘‘change’’ or ‘‘no change’’ with an

unspeeded key press.

Subjects

Twenty-two subjects from the same community as in Experi-

ments 1a and 1b participated in a 1-hr session for course credit.

Procedure

There were eight blocks of 48 trials (16 color trials and 32 trials

using the mixed arrays of cubes and characters). Trial order was

randomized within each block.

Results and Discussion

Once again, object type had a strong influence on change-

detection accuracy. An analysis that excluded the cross-cate-

gory-change trials showed that accuracy was lower for cubes

(k 5 1.4) than for characters (k 5 1.7), t(21) 5 2.1, p < .05,

prep 5 .878, d 5 0.33, and lower for characters than for colors

(k 5 3.6), t(21) 5 2.7, p < .05, prep 5 .94, d 5 0.42. We con-

sidered whether the mere presence of cross-category changes

might have encouraged subjects to adopt a ‘‘low-resolution’’

strategy for encoding sample arrays (e.g., encoding only cate-

gory-level information). However, we note that capacity esti-

mates in the within-category-change condition of Experiment 2

were statistically indistinguishable from those in Experiment 1a

(for cubes, p 5 .19; for characters, p 5 .70), suggesting that a

similar level of detail was encoded in the two cases.

Figure 4 shows accuracy for trials in which a change occurred.

For within-category changes, there were monotonic decreases in

accuracy as complexity increased. However, when a cross-cat-

egory change occurred (and sample-test similarity was therefore

low), accuracy for even the most complex objects was equivalent

to that for simple colors. Capacity estimates (using only no-

change trials and cross-category-change trials) for cubes (k 5

4.2) and Chinese characters (k 5 3.5) were as high as the esti-

mate for colors (k 5 3.6).2 These data suggest that the number of

slots active in visual working memory was the same even for the

most complex objects as for simple colors. Otherwise, change-

detection accuracy could not have reached the same level in the

cross-category-change condition as in the simple color condi-

2Cube-to-character changes led to higher capacity estimates than character-
to-cube changes, t(21) 5 2.7, p < .01. All other paired comparisons were
nonsignificant.
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tion. Thus, difficulties in detecting within-category changes of

complex objects could be accounted for entirely by comparison

errors, even if the number of stored items is the same for complex

and simple objects.

Essentially, we are suggesting that as object complexity in-

creases, the limiting factor for performance shifts from the

number of items that can be maintained in working memory to

the probability of comparison errors. This shift is driven not by

increases in object complexity per se, but by the associated

increases in sample-test similarity. Thus, for simple colors or

cross-category changes, the limiting factor is the number of

items that can be held in visual working memory. By contrast,

within-category changes with complex objects entail high sam-

ple-test similarity, so the limiting factor is the probability of errors

during the comparison stage of the task. In this case, perfor-

mance may be determined by the resolution, rather than the

number, of representations in working memory.

This hypothesis can be tested further by examining individual

differences in performance across the conditions. If change de-

tection with simple and complex objects measures a common

storage capacity, then an individual’s performance with simple

objects should be strongly predictive of his or her performance

with complex objects. That is, individuals who have a high ca-

pacity for simple objects should also have a relatively high ca-

pacity for complex objects. By contrast, if performance for complex

objects is limited by a factor other than storage capacity (e.g.,

comparison errors), then there may be little or no relation between

an individual’s capacity estimates for simple and complex objects.

Figure 5 shows correlations between individual capacity es-

timates obtained from different conditions in Experiment 2.

Table 1 shows the full correlation matrix.3 The within-category-

change and cross-category-change conditions were distinguished

only during change trials, even though capacity estimates are

calculated using both change and no-change trials. Thus, when

capacity estimates were calculated for the within-category-

change and cross-category-change conditions, a common set of

no-change trials was used for these estimates (averaged across

the four- and eight-item trials). This enabled a shared metric (k)

for all conditions. Three results are of primary interest. First,

there was a strong positive correlation between capacity esti-

mates from the cross-category-change condition and the color

condition (Fig. 5a), r(20) 5 .88, p < .01, prep > .995, two con-

ditions in which sample-test similarity was low. This correlation

suggests that these two measures tap into a common on-line

memory capacity. Second, there was also a clear correlation

between capacity estimates from within-category-change trials

with the shaded cubes and within-category-change trials with

the Chinese characters (Fig. 5b), r(20) 5 .65, p < .01, prep 5

.990, two conditions in which sample-test similarity was rela-

tively high. Finally, there was no trace of a correlation between

Fig. 4. Accuracy during change trials in Experiment 2 as a function of the
type of change and set size. Accuracy for detecting simple color changes
provided a benchmark for performance when sample-test similarity
was low.

Fig. 5. Correlations between individual capacity estimates in the main
conditions of Experiment 2: correlation between (a) the two conditions
with low sample-test similarity (i.e., the color and cross-category-change
conditions), (b) the two conditions with high sample-test similarity (i.e.,
within-category-change conditions), (c) the color condition and the within-
category-change condition, and (d) the cross-category-change conditions
and the within-category-change condition. Asterisks denote significant
correlations, p < .001. Capacity was calculated using Cowan’s (2001) k.

3A further split-half analysis showed that all significant and nonsignificant
correlations were replicated within the first and second halves of this experi-
ment.
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estimates based on the conditions in which sample-test simi-

larity was low and the conditions in which it was high (Figs. 5c

and 5d). For example, although capacity estimates from the color

condition were an excellent predictor of performance in the

cross-category-change condition, there was no significant cor-

relation between capacity in the color condition and capacity in

the within-category-change condition (r 5 �.14, p 5 .53). Fi-

nally, a test of differences between within-sample correlations

revealed that the correlation between capacity estimates in the

color condition and in the cross-category-change condition was

significantly larger than the correlation between capacity esti-

mates in the color condition and in the within-category-change

condition (Z 5 4.76).

The absence of any correlation between capacity estimates

for colors and complex objects (in the within-category-change

condition) is striking given the natural assumption that change-

detection tasks with colors and complex objects measure the

same cognitive ability. Capacity estimates for simple colors

correlate with a variety of cognitive measures, including scores

on wide-ranging tests like the Stanford-Binet Intelligence Scale

and Raven’s Progressive Matrices (Cowan et al., 2005). Thus, it

seems plausible that memory capacity for simple colors should

predict capacity for complex visual stimuli. Nevertheless, these

results suggest that change-detection tasks with simple and

complex objects measure two relatively distinct abilities. Thus,

individual differences in the number of representations that can

be held in working memory appear to be independent of indi-

vidual differences in the resolution of those representations.

GENERAL DISCUSSION

Our primary conclusion is that a fixed number of items are

represented in visual working memory, regardless of the com-

plexity of those items. Although previous research has reported

reductions in the number of stored objects as complexity in-

creases (Alvarez & Cavanagh, 2004; Eng et al., 2005), our re-

sults suggest that errors in comparing the test array with the

remembered information led to underestimates of the number of

items in working memory. This conclusion is supported by our

finding that change-detection performance was equivalent with

simple colors and complex objects when low sample-test simi-

larity minimized comparison errors.

We propose that as the similarity between the sample and test

arrays increases, there is a qualitative shift in the ability that is

measured by the change-detection procedure. When sample-

test similarity is low, performance is limited by the number

of representations that can be simultaneously maintained in

working memory. The simple colored stimuli employed by Luck

and Vogel (1997) fall into this category. However, more complex

objects entail high sample-test similarity, so that performance

is limited during the comparison stage of the task. Although

there are stable individual differences in the ability to make

fine discriminations between complex objects (as shown by the

significant correlation between change detection with cubes and

with Chinese characters), this ability is apparently independent

of the number of items that an individual can hold in working

memory. This raises an intriguing empirical question. Although

previous studies have found robust correlations between various

measures of intelligence and the number of items that an indi-

vidual can maintain in working memory (i.e., change detection

with low sample-test similarity), it remains to be seen whether a

similar relation holds between intelligence and the resolution of

representations in working memory.

This two-factor model is consistent with Xu and Chun’s (2005)

suggestion that two dissociable neural mechanisms mediate

visual working memory. They reported that neural activity

within the inferior intraparietal sulcus represented about four

items regardless of complexity, whereas the number of items

represented within the superior parietal and lateral occipital

regions was reduced for complex objects. It is possible that

activity within the inferior intraparietal sulcus determines the

number of representations an individual can hold (Todd &

Marois, 2004; Vogel & Machizawa, 2004), and activity within

the superior parietal and lateral occipital regions determines the

resolution of these representations.

These results do not contradict the basic insight that infor-

mation load influences change-detection performance. Indeed,

our measure of similarity probably taps into the same thing as

the information-load measure introduced by Alvarez and

Cavanagh (2004), who defined information load as the ‘‘amount

of visual detail’’ (p. 106) that is stored for an object. Clearly,

higher sample-test similarity means that more visual detail must

be maintained to detect potential changes. Moreover, it is known

that search slopes increase as target-distractor similarity in-

creases (Duncan & Humphreys, 1989), which leaves open the

possibility that changes in similarity were the cause of the

variations in information load in Alvarez and Cavanagh’s ex-

periments. Our focus on similarity places more emphasis on the

discriminability of the sample and test, whereas the information-

load construct emphasizes the intrinsic complexity of the sample

array. But the predictive power of both measures draws from the

fact that a representation of higher resolution is required to

TABLE 1

Correlations Between Capacity in the Four Main Conditions of

Experiment 2

Condition

Condition

Color C-C change
W-C change:

Chinese

Color —

C-C change .88* —

W-C change: Chinese .07 .07 —

W-C change: cubes �.32 �.28 .65*

Note. Asterisks denote significance at a threshold of p < .01. No other cor-
relations were significant. C-C 5 cross-category; W-C 5 within-category.
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detect changes between similar objects than to detect changes

between dissimilar objects. Thus, the key insight that our work

may offer is to show that the relation between change-detection

performance and complexity is determined by the resolution,

rather than the number, of representations that can be held in

working memory.

On the basis of the finding that change detection with one-item

displays was nearly perfect for both simple and complex objects,

Alvarez and Cavanagh (2004) argued that complexity effects

cannot be explained by positing a fixed number of slots with

limited resolution. We agree that near-perfect performance with

one complex object suggests a higher-resolution representation

than is found with multiple-item displays. Perhaps resolution is

determined by the total number of items maintained in working

memory, such that resolution increases as the number of items

goes down. But the finding that capacity estimates for simple and

complex objects are equated when sample-test similarity is low

may be best explained by a fixed number of active slots with

limited resolution.

We conclude that visual working memory holds a fixed num-

ber of items, regardless of the complexity of those items. These

slots have limited resolving power, however, such that high

similarity between sample and test items will elicit errors during

the comparison stage of a change-detection task. Thus, com-

plexity can have a strong influence on change-detection per-

formance, but it does not do so by influencing the number of

items that are represented. When low similarity prevents com-

parison errors, capacity estimates for complex and simple ob-

jects are equivalent.
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