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Individual Differences in Working Memory and Attentional Control Continue
to Predict Memory Performance Despite Extensive Learning

Chong Zhao and Edward K. Vogel
Department of Psychology, University of Chicago

Institute for Mind and Biology, University of Chicago

Individual differences in working memory predict a wide range of cognitive abilities. However, little
research has been done on whether working memory continues to predict task performance after repetitive
learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM)
performance for picture sequences even after participants showed massive learning. In Experiments 1–3,
subjects performed a source memory task in which they were presented a sequence of 30 objects shown
in one of four quadrants and then were tested on each item’s position. We repeated this procedure for
five times in Experiment 1 and 12 times in Experiments 2 and 3. Interestingly, we discovered that individual
differences in working memory continually predicted LTM accuracy across all repetitions. In Experiment 4,
we replicated the stable working memory demands with word pairs. In Experiment 5, we generalized the
stable working memory demands model to attentional control abilities. Together, these results suggest that
people, instead of relying less on workingmemory, optimized their workingmemory and attentional control
throughout learning.

Public Significance Statement
Working memory ability predicts various cognitive abilities. However, whether its predictive power
remains after participants repetitively study the test materials remains unknown. Here, in five
experiments with visual and verbal materials, we found that individual differences in working memory
and attentional control (WMAC) constantly predicted people’s memory performance even after
extensive training of the same materials. Our results provided a new understanding of WMAC, in that
learning may better tune participants’ attention and working memory toward task demands, instead
of eliminating the reliance on attentional control in performing tasks.
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Working memory is the ability to maintain task-relevant
information in the presence of distracting information and has
been proposed to play a key role in the performance of many
laboratory-based and real-world cognitive tasks (Draheim et al.,
2022; Unsworth & Engle, 2007). Such claims are supported by the
finding that individual differences in working memory predict
performance on a wide range of tasks that measure many aspects
of cognitive ability, such as abstract reasoning (Unsworth et al.,
2014), long-term memory (LTM) encoding (Miller et al., 2019),

mathematical reasoning (Raghubar et al., 2010), and even academic
performance in math, science, and even some facets of literacy
(Gathercole et al., 2004). For example, Unsworth et al. (2014)
measured the relationship between working memory capacity and
picture–location source memory task in which participants studied
a sequence of visual objects presented sequentially in different
quadrants of the screen. At test, each image was presented at the
center and subjects reported which of the four quadrants it originally
appeared. Individuals with high working memory showed superior
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source memory performance than those with low working memory
ability (r = 0.38, p < .001). The general finding that individuals
with high working memory ability have superior performance on
many cognitive tasks has been observed in numerous studies over
the years and has served as a key source of evidence that working
memory is a critical component of the successful operation of
many cognitive tasks. However, the mechanisms by which working
memory abilities impact task performance are not well understood.
This is in part because most of these studies generally measure the
relationship between working memory and a given cognitive ability
only once—most typically during the first (and only) time the
participant performed that particular cognitive task. Consequently,
the reported relationship with working memory could potentially be
explained by how quickly an individual initially learns to perform a
new cognitive task. Relatedly, as task skill develops some have
proposed that the demands for working memory become reduced
(Fitts & Posner, 1967). Thus, from this perspective, the relationship
between working memory and performance on a given task may be
significantly altered once the individual has developed significant
skill in the task.
In the skill development literature, researchers refer to these as

“Aptitude × Treatment interactions,” with the aptitude being the
general cognitive abilities and the treatment being the number of
repeated learning events. A variety of outcomes have been observed
between learning performance and general cognitive abilities. One
class of hypothesis, which we later describe as the rich-get-richer
model, suggests that the differences in skill performance between
participants with high and low cognitive abilities become magnified
throughout learning. This effect presents as a positive interaction
between the number of learning events and general cognitive
abilities, where participants with higher general cognitive abilities
improved more than participants with lower cognitive abilities
with each repetition. An example supporting the rich-get-richer
hypothesis was that researchers found that high-ability participants
increased faster than low-ability subjects in a novel verbal sequence
learning task across repetitions, with Raven’s square performance
as the ability measures (Williams et al., 2008; B. A. Williams &
Pearlberg, 2006).
Alternatively, participants with low general cognitive abilities may

gradually catch up with high performers with learning. This class of
models, which we refer to as the slow starter hypothesis, suggests
a negative interaction between repetitions and cognitive abilities
and states that cognitive abilities become less predictive of task
performance as learning unfolds. For instance, when learning a new
motor skill, although all participants became faster over repetitions,
high performers in the initial session showed reduced advantage
over low performers as learning proceeded (Ackerman, 1987).
Furthermore, participants with low general intelligence abilities
had a higher learning curve in motor tasks than high intelligence
participants, suggested by a decrease in correlation between general
abilities and task performance across repetitions (Kanfer &
Ackerman, 1989).
Finally, participants may continually demand similar levels of

general cognitive abilities across learning. We refer to this class
of hypotheses as the stable demands model. A prediction of this
model was that participants with high and low cognitive abilities
improve at a similar rate across repetitions. Therefore, the interaction
between learning and general cognitive abilities would be expected to
be close to null, since the number of repetitions does not change the

predictive power of cognitive abilities in task performance. One
example of this claim is that general abilities (verbal and visual
measures) continually predict the learning of complex skills (Ackerman
et al., 1995). In support of this hypothesis, evidence from paired-
associate learning and three-term verbal learning suggested that the
intelligence factor, g, continually predicted the learning performance
metrics for all four repetitions, indicating that high and low performers
increased at a similar speed across repetitions (Kaufman et al., 2009).

One potential challenge in interpreting these mixed results from
the skill acquisition literature is that each study used a set of different
cognitive ability measures, including, but not limited to, working
memory, processing speed, fluid intelligence, and attentional control
measures. To test the specific relationship between aptitude and
treatment interaction, we are interested in how the learning of visual
items to spatial positions relates with visual workingmemory (VWM)
as the measure of individual general cognitive ability. However, even
the measurement of something as specific as VWM has the potential
of capturing other related cognitive mechanisms. Attention control
mechanisms are well known to be highly related to working memory
ability and have largely overlapping variance in individual ability. A
common way to measure VWM is to ask participants to memorize an
array of colors over a brief period of time and test them onwhether the
color of an item of the array changed or remained the same (Martin
et al., 2021). The covariance structure of performance on this task
suggests that it mostly taps on to working memory abilities, and also
shared variance between working memory and attentional control
(WMAC), and finally attentional control the least. Alternatively,
when participants performed a variation of the task inwhich theywere
asked to selectively attend only to certain objects in the array and filter
out distractors, this selective complex visual array task required
higher levels of attentional control ability and less working memory
abilities. A closer look at the covariance structure suggested that
performance in a selective visual array task was explained mostly by
attentional control abilities, then the shared variance betweenworking
memory capacity and attentional control abilities, and working
memory abilities the least. Therefore, complex visual array tasks were
well-suited for measuring general cognitive abilities, in that the
variance explained by WMAC was directly related to the level of
selection that took place when performing the task.

In the present study, we seek to examine the relationship between
working memory and performance on a source memory task
throughout the initial stages of task learning following repeated
practice. We will test three competing hypotheses that make distinct
predictions about the relationship between working memory and
source memory performance as task skill develops (see Figure 1A–
1C). The first one, which we label the stable demands hypothesis,
proposes that working memory always plays a key role in task
performance regardless of the individual’s level of skill in the task.
This predicts that the performance advantages associated with high
working memory will persist from initial learning to high levels of
task performance. The other two hypotheses we will test propose that
there may be significant differences in learning rate between high and
low working memory individuals, which may alter the relationship
with attention control as skill develops. The slow starter hypothesis
proposes that individuals with low attention control have poor
performance on most new tasks, but that with practice and learning
they can catch up to their high attention control counterparts. This
predicts that there would be an initial advantage for the high working
memory individuals at the beginning, but that with practice and
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learning these advantages would be reduced or eliminated. The rich-
get-richer hypothesis proposes that individuals with high working
memory can learn and achieve task skill more quickly than those with
low working memory. This predicts that the initial advantages of
high working memory become even larger after extensive practice
due to a faster learning rate for those with high ability. In addition,
this procedure allows us to test an important secondary hypothesis:
do individuals with high working memory abilities learn faster than
those with low working memory? By measuring individual learning
rates across the repeated tests, we can test models that propose
that working memory abilities determine how quickly the individual
can acquire expert levels of knowledge in a task (Hambrick &
Engle, 2002; Hambrick et al., 2014; Meinz & Hambrick, 2010).
Furthermore, we aimed to test how working memory differences
generalized to the learning of verbal associations in LTM, as
measured by a verbal paired-associate recall task (Experiment 4).
Finally, we would like to test if our findings could be generalized
from working memory to attentional control abilities, as measured
with a battery of four tasks instead just the change detection task
used in Experiments 1–4 (Experiment 5).

Materials, Method, and Results

Overview of Experiments

We tested our hypothesis between working memory ability and
visual LTM in four experiments, with a well-powered sample of
participants recruited from the Prolific online platform (n = 1,250
in total), and diverse types of materials to be learned (visual in
Experiments 1–3 and 5 and verbal in Experiment 4, Figure 2).
Previous research has shown that individual differences in WMAC
abilities directly affected performances in VWM task, where partici-
pants memorized multiple visual stimuli on screen simultaneously
and maintained them over a brief delay period (Martin et al., 2021).
Therefore, we measured working memory abilities in our
Experiments 1–4 using the change detection task, a highly reliable

VWM task that required participants to detect the change in
perceptual features between the encoding array and the test probe
(Luck & Vogel, 1997; Xu et al., 2018; Zhao & Vogel, 2023). To
measure the effect of learning in visual LTM, participants were
presented with a sequence of stimuli to be repetitively learned
in every single experiment. In Experiments 1–3 and 5, subjects
performed a source memory task in which they were presented with
a sequence of 30 objects (45 objects in Experiments 2 and 3) shown
in one of four quadrants and then were tested on each item’s
position. We repeated this procedure for five times in Experiment 1
and 12 times in Experiments 2 and 3. In Experiment 4, we used a
highly reliable foreign word paired-associate recall task (Zerr et al.,
2018), in which participants were asked to learn Lithuanian–English
word pairs in their initial study phase. During the test phase, they
were cued with the Lithuanian word and asked to type out its paired
English word. We repeated this study–test procedure for four times
in Experiment 4 to build up their memory on these Lithuanian–
English paired associates. In Experiment 5, we aimed at generalizing
our findingswith workingmemory capacity to bothWMACabilities.
Therefore, we used a battery of four tasks, consisting of two working
memory tasks (change localization and filtering change localization)
and two attentional control tasks (Flanker square and Simon square
tasks). All experiments were approved by the University of Chicago
Institution Review Board, and all participants provided informed
consent online.

Transparency and Openness

This study was not preregistered before data analysis. We report
how we determined all data exclusions, all manipulations, and all
measures in the study. Experiments were programmed in Javascript
and jspsych packages. Analyses were performed in Python 3.7,
with the package matplotlib, scipy, numpy, and seaborn for plotting.
Analysis scripts are publicly accessible at https://osf.io/dvumt/. Data
and materials used in this study are accessible to the public in the
Open Science Framework repository.
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Figure 1
A Depiction of Three Hypotheses of the Relationship Between Attention Control Ability and Memory Performance Throughout
Learning Following Repeated Practice

(A) Stable Demands 

Stable Demands: high and low attention control individuals
improve at a similar speed as learning progresses.

(B) (C)Slow Starter Rich get Richer

Slow Starter: attention control ability initially affects
long-term memory performance. However, as learning 
progresses, high and low attention individuals show
comparable long-term memory performance.

Rich get Richer: attention control ability initially predicts
long-term memory performance. As learning progresses, 
high attention individuals show even larger advantages 
in memory performance than low atention individuals.

No. Repetitions No. Repetitions No. Repetitions

Note. (A) Depiction of the “stable demands” hypothesis. (B) Depiction of the “slow starter” hypothesis. (C) Depiction of the “rich-get-richer”
hypothesis. See the online article for the color version of this figure.
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Experiment 1: Stable Working Memory Demands
Despite of Extensive Learning of the Same Visual

Image Sequence

Method

Participants

Seven hundred participants were recruited at a rate of $9.50 per
hour from Prolific, an online platform for participant recruitment.
All participants were 18–35 years old, currently living in the
United States, had normal or corrected-to-normal vision, and with
no ongoing psychological or neurological disorders.

Stimuli

In our VWM task, all stimuli were colored squares generated in
Javascript using the jsPsych canvas keyboard interface. The colored
squares were all 40 × 40 pixels in size on a 400 × 400 pixels canvas
page. The colored squares could appear anywhere within a circular
area of the monitor within 30–200 pixels from the center of the
canvas screen. Each square could appear in one of the nine distinct
colors with no repetitions within any trial (RGB values: red = 255
0 0; green= 0 255 0; blue= 0 0 255; magenta= 255 0 255; yellow=
255 255 0; cyan = 0 255 255; orange = 255 128 0; white =
255 255 255; and black = 0 0 0). Participants were instructed to
fixate at a small black plus (30 px in Arial) at the center of the screen
throughout the trial. In our source learning paradigm, all pictures

were selected from a public picture database (Brady et al., 2008). In
each picture list, we selected 30 pictures from 15 distinct semantic
categories.

Procedure

In measuring VWM capacity, we administered a change detection
task with Set Size 6. In each trial, six colored squares would appear
simultaneously on the screen for 250 ms, followed by 1,000 ms of
retention interval, when no stimuli were shown on the screen. Then,
one colored square would appear at one of the six previous locations
at which the encoding array had appeared, and the participant was
asked if the color of this new square changed from the studied square
that was located at the same position 1,000 ms before. During half
of the trials, the color of this new square would change into a new
color that was not seen before. In the other half of the trials, the new
square would share the same color and location as one of the six
studied squares. Each participant completed 240 trials of the change
detection task in their Phase 1 (see Figure 2 Upper).

After completing the VWM task, participants were then
administered a source memory and learning task. In each trial of
the study phase of the task, participants were shown a real-world
object located at one of the four quadrants of the screen for 2000 ms.
They were asked to remember both the content and the location of
the object since both properties were relevant for their later test
phase. The study phase consisted of 30 trials in total. Following the
study phase, participants were tested on the picture list they learned
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Figure 2
The Change Detection Paradigm, Source Memory Paradigm Used in Experiments 1–3

set size 6

+

250 ms stimulus500 ms
ITI

Phase 1: Simultaneous Change detection Paradigm (240 trials)

+

Till Response
Change or No Change

+

1000 ms
Retention Interval

Study Phase: study the picture and where it is on the screen 

(30 pictures in Exp 1, 45 pictures in Exp 2-3)

+ + +

Phase 2 (Exp 1-3): Source Memory and learning task

Test Phase: given picture at center, recall its location during the study phase 

(30 pictures in Exp 1, 45 pictures in Exp 2-3)

(5 repetitions, in Exp 1, or 12 repetitions, in Exp 2-3, of Study Phase+Test Phase)

500 ms
ITI

500 ms
ITI

...Till 30
or 45 
pictures

...Till 30
or 45 
pictures

2000 ms stimulus 2000 ms stimulus 2000 ms stimulus Till Response
Upper Left/Upper Right/
Lower Left/Lower Right

Till Response
Upper Left/Upper Right/
Lower Left/Lower Right

Till Response
Upper Left/Upper Right/
Lower Left/Lower Right

Note. (Upper) A sample of the Set Size 6 simultaneous change detection paradigm. Six colored squares appeared on the screen simultaneously. At the end of
the trial, participants were cued with a square at one of the six original locations, with 50% exhibiting a color change and 50% without change. (Middle) A
sample of the source memory and learning paradigm used in Experiments 1–3. During each trial of the study phase, a real-world object appeared at one of the
four quadrants on the screen for 2 s. The participants need to encode the content of the picture as well as where it was placed on the screen.We had 30 pictures in
total for the study phase. During each trial of the test phase, we cued the participants with the studied object at the center of the screen, and they were asked to
recall which quadrant the object was in during the study phase. The study and test phases were repeated for five times in Experiment 1 and 12 times in
Experiments 2 and 3. Exp = Experiment; ITI = intertrial interval. See the online article for the color version of this figure.
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immediately. Each trial of the test phase started with a picture placed
at the center of the screen, and participants had 5 s to respond to
which quadrant the object was in during the study phase. The test
phase maintained the same order of pictures as the study phase, and
therefore also had 30 pictures in total. The study and the test phases
were repeated five times in the same order to facilitate the learning of
the sequence (see Figure 2 Lower).

Power Estimation

A power analysis was conducted using InteractionPoweR
(Baranger et al., 2023) to determine the minimum sample size
required to test the study hypothesis (i.e., Aptitude × Treatment
interaction effect). We ran 1,000 simulations for each of the power
estimation hyperparameters and assumed that our working memory
measures and LTM measures were both reliable (reliability of 0.8
and 0.9, respectively, according to Zhao & Vogel, 2024). With a
small effect (interaction r = 0.2), to achieve 80% power with α =
.05, the estimated sample size was N = 127. Since no prior studies
directly informed our design, we also ran 1,000 simulations with a

smaller effect size (r = 0.1). Results indicated that the required
sample size to achieve 80% power for detecting a small effect
(interaction term with outcome variable r = 0.1), at a significance
criterion of α = .05, was N = 556. Thus, the obtained sample size of
N = 700 is adequate to test the study hypothesis, with an estimated
power of 0.88.

Results

In Experiment 1, we tested if individual differences in VWM
capacity were predictive of source memory accuracy, our memory
performance measure that was expected to improve with more
repetitions. We first confirmed that repeated exposure to the same
image sequence resulted in improvement in source memory accuracy
suggesting that participants showed significant improvement in LTM
via learning, F(4, 694) = 291.35, p < .001, η2 = 0.30 (Figure 3A).
More importantly, across 700 participants, we observed that VWM
capacity positively correlated to the mean source memory accuracy
of the five repetitions of the same picture list, r(699)= 0.39, p< .001
(Figure 3B). If the slow starter hypothesis held true for visual
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Figure 3
Visual Working Memory Capacity Consistently Predicted Source Memory Performance, Even as People Started Building Expertise for the
Source Memory List

Visual working memory capacity (K)
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Note. (A) Source memory accuracy increased as participants repeatedly learned the same list of item–location bindings. (B) The visual working memory
capacity, estimated by the change detection task of Set Size 6, positively correlated to the mean accuracy of source memory task for all five repetitions. (C) In
each individual repetition of the picture–location list, visual working memory capacity, reflecting attentional control abilities, positively correlated to the
source memory accuracy of that specific repetition, even as people already achieved expertise of the list. (D) Source memory performance split by visual
working memory quartiles. In every single repetition of the list, people with higher working memory capacity (attentional control abilities) had higher source
memory performance than people with lower attentional control abilities. See the online article for the color version of this figure.
* p < .05.

STABLE ATTENTIONAL CONTROL DEMANDS DURING LEARNING 5



sequence learning, then the more participants practiced the list, the
individual differences in working memory would be less predictive
of performance. Therefore, this model predicts a decrease in the
correlation between working memory and source memory as more
repetitions of the same list were presented to the participants (see
Figure 1B). However, we observed sustained positive correlations
between working memory and source memory accuracy for all five
repetitions of the sequence, r(699)> 0.26, p< .001 (Figure 3C). That
is, people with higher working memory abilities on average retained
their advantage in source memory performance than those with
lower working memory abilities, even as people repeatedly practiced
the same materials (Figure 3D). Indeed, the performance advantage
for the high working memory subjects remained constant despite
substantial learning across the five repetitions. The robust predictive
power of working memory on source memory accuracy, even when
participants had reached a relatively high level of recall performance,
contradicts the prediction of the slow starter hypothesis and instead
supports the stable demands hypothesis.

Individual Differences in Learning Rate Are Not Related
to Working Memory Ability

As shown in Figure 3D, individuals with high working memory
abilities had better source memory performance than low working
memory subjects beginning with the first repetition and this advantage
persisted throughout the five repetitions. A key implication of this

pattern is that it suggests that both high and low working memory
subjects improved their source memory performance by roughly the
same amounts across the five repetitions, even though they had
different starting levels of performance. This finding appears to
robustly contradict the rich-get-richer hypothesis that proposes that
high working memory subjects may learn more quickly than low
working memory individuals. However, this observation of parallel
learning slopes between across different quartiles of working memory
ability may be too coarse to observe the relationship between working
memory and individual learning slope.

To better quantify the effect of repetitions on increasing the
accuracy of source memory, we first quantified each individual
subject’s performance with a linear model of learning, which
assumed that each repetition enhanced source memory accuracy by a
fixed amount of strength (Figure 4A). We tested the reliability of
these linear learning slopes in Experiment 1 data by performing an
odd–even split-half correlational analysis. The source memory trials
were evenly divided into two halves, and the linear slopes were
calculated separately for the odd half of trials and the even half of
trials. The Spearman–Brown corrected correlation between the two
slope measures was 0.747, indicating that the linear slope had a high
reliability (Figure 4B). Alternatively, participants may learn faster in
their earlier repetitions and reach a plateau during later repetitions.
This form of learning could be better captured by a log-linear
model, which assumes a steeper learning speed at first (Figure 4D).
Similarly, we then tested the reliability of the log-linear learning
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Figure 4
Visual Working Memory Capacity Predicted Neither Linear or Log Learning Slope
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Note. (A) Simulated linear learning model. This model assumed that learning emerged linearly across repetitions. (B) The linear learning model was highly
reliable when applied to Experiment 1 data. The odd–even split-half Spearman–Brown corrected correlation was 0.747 for the linear model. (C) Visual working
memory capacity did not predict learning slope under the linear assumption. (D) Simulated log learning model. This model assumed that learning emerged
faster during earlier repetitions than later repetitions. (E) The log learning model was also highly reliable when applied to Experiment 1 data. The odd–even
split-half Spearman–Brown corrected correlation was 0.750 for the log model. (F) Visual workingmemory capacity did not predict learning slope under the log
assumption. See the online article for the color version of this figure.
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slopes using Experiment 1 data by performing an odd–even split-half
correlational analysis. The Spearman–Brown corrected correlation
between the even and odd trial slope measures was 0.750, indicating
that the log slope had high reliability (Figure 4E). Different from its
sustained predictive power in expertise performance, VWM capacity
did not predict the linear learning slope, r(699) = 0.055, p = .10
(Figure 4C), or the log learning slope, r(699) = 0.063, p = .15
(Figure 4F).
To further examine the relationship between VWM capacity and

learning slopes, we performed a partial correlation model to regress
out the effect of mean source memory performance that may
moderate the VWM–slope correlation. The partial correlation
between VWM capacity and linear slope was not significant either,
r(699) = 0.045, p = .23, and the Bayes factor (BF) strongly favored
the null (BF = 10.42 favoring null). Similarly, the partial correlation
between VWM capacity and log slope was also close to zero,
r(699) = 0.047, p = .21, BF = 9.80 favoring null. In addition to
directly modeling the learning slope, we performed a linear mixed-
effect analysis with fixed effects for the number of repetitions,
working memory ability, and their interaction, with random slopes
and intercepts by participant. If the stable demands hypothesis held,
we would expect a nonsignificant interaction between working
memory ability and the number of repetitions. Alternatively, the
rich-get-richer hypothesis would result in a significant interaction
with a positive coefficient, and the slow starter hypothesis would
produce a significantly negative coefficient on the interaction term.
With a well-powered sample (n = 700), we discovered that the
interaction between working memory ability and the number of
repetitions remained not significant (β = 0.002, 95% CI [−0.001,
0.004], p = .07). Together, these results suggest that VWM capacity
does not predict the rate of learning via repetitions, supporting the
stable demands hypothesis.

Experiment 2: Stable Working Memory Demands
When Memory Performance Approaches Ceiling

Method

Participants

One hundred participants were recruited at a rate of $9.50 per
hour from Prolific, an online platform for participant recruitment.
All participants were 18–35 years old, currently living in the
United States, had normal or corrected-to-normal vision, and with
no ongoing psychological or neurological disorders.

Stimuli

The stimuli used were the same as in Experiment 1.

Procedure

The VWM task was the same as in Experiment 1. After
completing the VWM task, participants were then administered a
source memory and learning task. The procedures remained the
same as in Experiment 1, except that the study and the test phases
were repeated 12 times in the same order to facilitate the learning of
the sequence in Experiment 2.

Power Estimation

From our Experiment 1 data, we simulated sample sizes that
were enough to observe small effect using the correlations that we
observed in Experiment 1. The median estimated power for our
sample size (N = 95) in Experiment 2 was 0.802 (100 iterations of
1,000 time simulation). We plotted our power simulations with N =
100, 150, 200, 250, 300, and 700 in Supplemental Material.

Results

In Experiment 1, participants eventually reached an average accuracy
of 87.62% by their fifth repetition, which was still significantly higher
than the accuracy for the fourth repetition,M = 84.72%, t(699) = 8.42,
p < .001. That is, despite an over 25% improvement in memory
accuracy from the first to the fifth repetition, subjects may not yet have
reached performance asymptote. This raises the possibility that
contributions from the individual’s working memory ability would
only diminish once near-perfect task performance has been achieved.
To address this question, we designed a 45-picture source memory task
in Experiment 2 (n = 95) and asked a new set of participants to repeat
the study–test procedure for 12 times instead of five times as in
Experiment 1. As we expected, participants showed a significant
learning effect across repetitions as in Experiment 1, F(11, 82)= 60.74,
p < .001, η2 = 0.42 (Figure 5A). Examining the accuracy for each
individual repetition, we discovered that participants on average
stopped improving in their source recall accuracy starting by the seventh
repetition of the sequence (under Bonferroni correction, ps > .0045
starting seventh repetition). Under the slower starter hypothesis,
individual differences in working memory abilities should be no longer
predictive of source memory performance as expertise was fully
developed, especially following the seventh repetition in Experiment 2.
However, we did observe sustained predictive power of working
memory on source memory accuracy at the seventh repetition, r(94) =
0.24, p = .02. It is difficult to accurately measure correlations when
performance on one task is at or near the ceiling because there is a
restriction of range. After performing range restriction correction to
mitigate the ceiling effects of source memory accuracy for later
repetitions (Sackett & Yang, 2000), we found that working memory
abilities consistently positively correlated to source memory accuracy
until the 10th repetition of the list, corrected r(94) = 0.35, 0.39, 0.43,
and 0.28 for seventh, eighth, nineth, and 10th repetitions, respectively,
ps < .01, Figure 5B, ps > .05 for the 11th and 12th repetitions because
the range restriction correction method was insufficient to handle the
most extreme ceiling effects. To further investigate the interactions
between working memory and learning, we performed a linear
mixed-effect analysis with fixed effects for the number of repetitions,
working memory ability, and their interaction, with random slopes and
intercepts by participants. If the stable demands hypothesis held, we
would expect a nonsignificant interaction between working memory
ability and the number of repetitions. Alternatively, the rich-get-richer
hypothesis would result in a significant interaction with a positive
coefficient, and the slow starter hypothesis would produce a
significantly negative coefficient on the interaction term. Echoing
our previous findings, we discovered that the interaction between
working memory ability and the number of repetitions remained
not significant (β = 0.004, 95% CI [−0.007, 0.014], p = .49).
Furthermore, although response time decreased as more repetitions
of the task were shown, it reached an asymptote at the seventh
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repetition and did not reliably correlate with working memory
abilities (Supplemental Figure 1A and 1B). Therefore, we concluded
that gaining asymptotic levels of memory performance for a visual
sequence did not eliminate the differences in performance between
high and low working memory participants, supporting the stable
demands hypothesis.

Experiment 3: Stable Working Memory Demands
Even When Test Utilized a Different Serial Order

From the Encoding List

Method

Participants

One hundred one participants were recruited at a rate of $9.50 per
hour from Prolific, an online platform for participant recruitment.
All participants were 18–35 years old, currently living in the
United States, had normal or corrected-to-normal vision, and with
no ongoing psychological or neurological disorders.

Stimuli

The stimuli used were the same as in Experiments 1 and 2.

Procedure

The VWM task was the same as in Experiments 1 and 2. After
completing the VWM task, participants were then administered a
source memory and learning task. The procedures remained the
same as in Experiment 2, except that the items in the study and the
test phases were repeated 12 times, but in randomized order instead
of the fixed order used in Experiments 1 and 2.

Power Estimation

From our Experiment 1 data, we simulated sample sizes that were
enough to observe small effects using the correlations that we
observed in Experiment 1. The median estimated power for our
sample size (N = 101) in Experiment 3 was 0.823 (100 iterations
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Figure 5
Visual Working Memory Capacity Predicted the Accuracy in Each Repetition of Source Memory List in Experiments 2 and 3
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Note. (A) Source memory accuracy increased as participants repeatedly learned the same list of item–location bindings for 12 times in Experimet 2. (B)
Visual working memory capacity, reflecting attentional control abilities, positively correlated to the mean accuracy of source memory task performance up to
10th repetition after correction of range restriction. (C) Source memory accuracy increased as participants learned the same list of item–location bindings but
presented in randomized order for each iteration, for 12 times in Experiment 3. (D) Visual working memory capacity, reflecting attentional control abilities,
positively correlated to the mean accuracy of source memory task performance for all 12 iterations of learning. Exp = experiment; bt. = between; n.s. = not
significant. See the online article for the color version of this figure.
* p < .05.

8 ZHAO AND VOGEL

https://doi.org/10.1037/xge0001728.supp


of 1,000 time simulation). We plotted our power simulations with
N = 100, 150, 200, 250, 300, and 700 in Supplemental Material.

Results

To facilitate learning of the visual bindings, we tested the image–
location bindings in the same sequence order as the order during the
encoding phase in Experiments 1 and 2. In a more realistic scenario,
however, one would expect that participants, with enough practice,
should be able to utilize the learned memory associations flexibly
even without the contextual benefits that result from using the
same order for study and test. Therefore, in Experiment 3, we used
the same study–test procedures as in Experiment 2, but with a
completely randomized order of items for each repetition of the
45-item visual sequence (n = 101). With this slight change in our
experimental design, we were able to directly acquire a purer metric
of source memory knowledge for each individual image–location
binding, eliminating a potential confound brought by retrieving
temporally neighboring items during test. Similar to the previous
experiments, participants showed significant learning effects for the
locations of items across repetitions, F(11, 88) = 30.07, p < .001,
η2 = 0.38 (Figure 5C). Examining the accuracy for each individual
repetition, we discovered that participants on average stopped
improving in their source recall accuracy starting at their seventh list
(under Bonferroni correction, ps> .0045 starting seventh list, except
from the eighth list). Replicating Experiments 1 and 2, we observed
sustained positive correlations between VWM capacity and source
memory accuracy, raw Pearson r(100)≥ 0.29, ps< .001 (Figure 5D).
To further investigate the interactions between working memory and
learning, we performed a linear mixed-effect analysis with fixed
effects for the number of repetitions, working memory ability, and
their interaction, with random slopes and intercepts by participants. If
the stable demands hypothesis held, we would expect a nonsignifi-
cant interaction between working memory ability and the number
of repetitions. Alternatively, the rich-get-richer hypothesis would
result in a significant interaction with a positive coefficient, and the
slow starter hypothesis would produce a significantly negative
coefficient on the interaction term. Echoing our previous findings, we
discovered that the interaction between working memory ability and
the number of repetitions remained not significant (β = −0.001,
95% CI [−0.015, 0.013], p = .90). Furthermore, although response
time decreased as more repetitions of task were shown, it reached
asymptote at the sixth repetition and did not consistently correlate
with working memory abilities (Supplemental Figure 1C and 1D). In
conclusion, we successfully validated our findings in Experiments 1
and 2 that individual differences in working memory abilities
predicted task performance even after participants acquired extensive
performance expertise for the images in the list, again supporting
the stable demands hypothesis.

Experiment 4: Stable Working Memory Demands
Generalize to Verbal Associative Memory

Method

Participants

Two hundred participants were recruited at a rate of $9.50 per
hour from Prolific, an online platform for participant recruitment.
All participants were 18–35 years old, currently living in the United

States, had normal or corrected-to-normal vision, and with no
ongoing psychological or neurological disorders.

Stimuli

The stimuli used in the working memory task were the same as in
Experiments 1–3. The word stimuli used in the Lithuanian–English
word pairs were used in previous research (Zerr et al., 2018) and
were selected such that the length of the pairs was similar and within
reasonable range. All word pairs were displayed in all capital letters
on a white background in black with a 48-point Arial font.

Procedure

The VWM task was the same as in Experiment 1. After completing
the VWM task, participants were then administered a verbal source
memory and learning task. Participants studied 45 Lithuanian–English
word pairs presented sequentially, and the order of presentation was
randomized across participants. Each pair was presented one at a time
for 4 s each and separated by a 1-s interstimulus interval. Participants
were instructed to learn the word pairs for a later cued-recall test.
During the test-relearn phase of the task, participants were provided
with a Lithuanian word as retrieval cue and were asked to recall the
English word that was paired with the cue during study phase.
Immediately after the participants finished responding to the cue, the
studied Lithuanian–English pair was presented to them to restudy the
pair. After all 45 pairs were tested and restudied, participants were
instructed to proceed to another test-relearn phase. The test-relearn
phase of the task was repeated four times for each participant (see
Figure 6A).

Power Estimation

From our Experiment 1 data, we simulated sample sizes that
were enough to observe small effect using the correlations that we
observed in Experiment 1. The median estimated power for our
sample size (N = 188) in Experiment 4 was 0.954 (100 iterations of
1,000 time simulation). We plotted our power simulations with N =
100, 150, 200, 250, 300, and 700 in Supplemental Material.

Results

Our results from all three experiments above collectively suggest
the importance of working memory in expert performance even
after extensive learning of image–location bindings. One remaining
question is whether individual differences in working memory play a
similar role for the development of expertise for other materials in
LTM, such as memory for verbal paired associates. In Experiment 4,
we examined the relationship between working memory and verbal
LTM using a paired-associate task developed by Zerr et al. (2018).
Participants were shown 45 Lithuanian–English word pairs during
encoding. Following the study phase, they were cued with Lithuanian
words and asked to type out the associated English word during test
(see Figure 6A). Each participant repeated the test procedures for
four times and finished a change detection task to test their working
memory abilities as in all previous experiments. Across four iterations
of learning and testing, participants showed significant learning effect
for the English words paired with the Lithuanian cues, F(3, 185) =
124.83, p < .001, η2 = 0.40 (Figure 6B). Right after the first exposure

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

STABLE ATTENTIONAL CONTROL DEMANDS DURING LEARNING 9

https://doi.org/10.1037/xge0001728.supp
https://doi.org/10.1037/xge0001728.supp
https://doi.org/10.1037/xge0001728.supp


of the paired associates, working memory abilities were not predictive
of their verbal LTM performance, r(186) = 0.14, p = .058. However,
as participants started building expertise on the English–Lithuanian
pairs, their working memory abilities started to positively correlate to
their verbal LTM accuracy, second repetition: r(186)= 0.21, p= .004;
third repetition: r(186) = 0.25, p < .001; fourth repetition: r(186) =
0.29, p < .001 (Figure 6C). If the slow starter hypothesis held, we
would expect that workingmemory abilities predicted verbal LTM the
best when participants were inexperienced with the pair associates. In
contrast to this prediction, we instead observed that working memory
played a constant role in verbal memory performance as participants
built up their expertise with these paired associates, supporting our
stable demands hypothesis. Therefore, we generalized our conclusion
from Experiments 1 to 3, suggesting that individual differences in
VWM abilities remained predictive of expertise performance with
both visual and verbal materials.
To further examine the relationship between VWM capacity and

learning slopes, we performed a partial correlation model to regress
out the effect ofmean sourcememory performance thatmaymoderate
the VWM–slope correlation. The partial correlation between VWM
capacity and linear slope was not significant, r(186) = 0.14, p = .06,
95% CI [−0.00, 0.28], and the Bayes factor slightly favored the null
(BF = 0.56 favoring null). Additionally, we performed a linear
mixed-effect analysis with fixed effects for the number of repetitions,
working memory ability, and their interaction, with random slopes

and intercepts by participant. If the stable demands hypothesis held,
we would expect a nonsignificant interaction between working
memory ability and the number of repetitions. Alternatively, the rich-
get-richer hypothesis would result in a significant interaction with a
positive coefficient, and the slow starter hypothesis would produce
a significantly negative coefficient on the interaction term. Echoing
our previous findings, we discovered that the interaction between
working memory ability and the number of repetitions remained
insignificant (β = 0.012, 95% CI [−0.001, 0.025], p = .07). Together,
these results suggest that VWM capacity does not predict the
rate of learning via repetitions, thus supporting the stable demands
hypothesis.

Experiment 5: Stable Attentional Control Demands
Following Repetitive Learning

In Experiment 5, we examined the relationship between WMAC
abilities, and its relationship with source memory across learning.
Our main goal here was to generalize our findings from a single
working memory measure to multiple tasks that had been shown to
load heavily onto bothWMACabilities. If the slow starter hypothesis
held true for visual sequence learning, then the more participants
practiced the list, the individual differences in attentional control and
working memory tasks would be less predictive of performance.
Therefore, this model predicts a decrease in the correlation between
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Figure 6
Visual Working Memory Capacity Predicted the Accuracy in Each Repetition of Verbal Associative Memory List in Experiment 4
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Note. (A) A sample of the word paired-associate recall task used in Experiment 4. The participants were asked to learn Lithuanian–English word pairs in their
initial study phase. During the test phase, they were cued with the Lithuanian word and asked to type out its paired English word. The correct answer would be
presented as feedback after every test trial, and the participants were expected to learn from this immediate feedback. The test phase was repeated four times to
facilitate the learning of verbal paired associates. (B) Source memory accuracy increased as participants repeatedly learned the same list of verbal associative
memory for four times in Experiment 4. (C) Visual working memory capacity positively correlated to the mean accuracy of source memory task across two to
four repetitions. Exp = experiment. See the online article for the color version of this figure.
* p < .05.
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attentional control and source memory as more repetitions of the
same list were presented to the participants (see Figure 1B).

Method

Participants

In Experiment 5, 145 young residents of the United States (18–
35 years old) were recruited through Prolific and received monetary
compensation ($10.00/hr). All participants reported normal or
corrected-to-normal vision, no color blindness, fluency in English,
no history of mental illness/condition, and no cognitive impairment.
All participants had successfully completed 90% or more of the
studies that they had participated in previously on Prolific (filtered
by approval rate ≥90%).

Materials and Procedure

In Experiment 5, all participants signed an informed consent and
completed five tasks. Each participant started with four attentional
control tasks (change localization paradigm, filtering change
localization paradigm, Flanker square task, and Simon square task,
see Figure 7), followed by a visuospatial source memory and
learning task, as in Experiment 1.
WMAC Tasks: Change Localization, Filtering Change

Localization, Flanker Square, and Simon Square.
Change Localization. The change localization task was

adopted from the color change localization task used in prior
research (Zhao et al., 2023). During every trial, six colored squares
were simultaneously displayed for a duration of 250 ms, succeeded
by a blank retention interval lasting 1,000 ms. Subsequently, the
same six squares reappeared in their original positions, but with one
of the colors altered to a hue not previously shown in that trial. Each
square was assigned a digit ranging from 1 to 6, and participants
were required to press the corresponding key to identify the square
that underwent a color change. The spatial arrangement of the six
numbers was randomized across trials.
Filtering Change Localization. The filtering change localiza-

tion task was modified from the filtering change detection task
(Luck & Vogel, 1997; Martin et al., 2021; Zhao & Vogel, 2024). In
each trial, a word, either RED or BLUE, denoting the color of the
items to be attended (the selection instruction), was presented for
200 ms, followed by a 100-ms interval. Subsequently, 10 bars were
displayed for 250 ms, with half of them being printed in the color
designated for attention, effectively a Set Size 5 condition. After a
900-ms delay, only the bars corresponding to the attended color
reappeared. During the test phase, only one of the bars changed its
orientation compared to the encoding phase. The participants were
asked to determine which one of the five bars had changed its
orientation compared to the initial presentation. This filtering
localization phase had 60 trials in total.
Flanker Square. The Flanker square task was one of the tasks

modified from the Flanker task (Burgoyne et al., 2023). In each
trial of the Flanker square task, participants were presented with a
target stimulus alongside two possible responses. Both the target
stimulus and response options consist of sets of five arrows
arranged horizontally (i.e., <<><<). Participants were instructed
to choose the response option where the middle arrow aligned in
direction with the outer arrows in the target stimulus. For instance,

if the target stimulus displayed arrows pointing left and right
(i.e., <<><<), participants should select the response option with
a central arrow pointing left (i.e., >><>>). Therefore, the task
required participants to focus on the outer arrows of the target
stimulus and the central arrow of the response options while
disregarding the central arrow of the target stimulus and the outer
arrows of the response options. Each participant completed 30 s
of practice and 90 s of test phase. The Flanker square score was
calculated as the difference between the number of correct and
incorrect responses.

Simon Square. The Simon square task was one of the tasks
modified from the Simon task (Burgoyne et al., 2023). In each
trial of the Simon square task, participants were presented with a
target stimulus and two response options. The target stimulus was
represented by an arrow, and the response options were the words
“RIGHT” and “LEFT.” Participants were instructed to choose the
response option that corresponded to the direction indicated by the
arrow in the target stimulus. For instance, if the arrow in the target
stimulus is pointed to the left, participant should select the
response option with the word “LEFT.” Both the target stimulus
arrow and the response options could appear on either side of the
computer screen with equal probability. Consequently, partici-
pants had to attend to the direction indicated by the target stimulus
arrow while understanding the meaning of the response options.
Simultaneously, they must disregard the side of the screen where
the target stimulus arrow and response options are presented. Each
participant completed 30 s of practice and 90 s of test phase. The
Simon square score was calculated as the difference between the
number of correct and incorrect responses.

Source Memory and Learning Task: Visuospatial Source
Memory. The source memory and learning task was the same as
in Experiment 1.

Power Estimation

From our Experiment 1 data, we simulated sample sizes that
were enough to observe small effect using the correlations that
we observed in Experiment 1. The median estimated power for our
sample size (N = 145) in Experiment 5 was 0.880 (100 iterations of
1,000 time simulation). We plotted our power simulations with N =
100, 150, 200, 250, 300, and 700 in Supplemental Material.

Results

Across five iterations of learning and testing, participants showed
significant learning effect for the item–location bindings, replicating
our results from Experiments 1 to 3, F(4, 139) = 105.11, p < .001,
η2 = 0.43. However, across all four attentional control and working
memory tasks used in our experiment, we observed sustained positive
correlations between attentional control and source memory accuracy
for all five repetitions of the sequence, change localization: rs(143) >
0.35, ps < .001; filtering change localization: rs(143) > 0.27, ps <
.002; Flanker square: rs(143) > 0.29, ps < .001; Simon square:
rs(143) > 0.25, ps < .002 (Figure 8). To further investigate the
interactions between attentional control and learning, we performed
a linear mixed-effect analysis with fixed effects for the number of
repetitions, attentional control ability, and their interaction, with
random slopes and intercepts by participant. If the stable demands
hypothesis held, we would expect a nonsignificant interaction
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Figure 7
Experimental Procedures for Experiment 4

 set size 6

+

250 ms stimulus500 ms
ITI

Change Localization Paradigm

Till Response
Which square changed 

its color

+

1000 ms
Retention Interval

+

 set size 5

+

250 ms stimulus500 ms
Color Filtering Cue:

Only pay attention to the bar
in the cued color (RED or BLUE)

Till Response
Which bar in cued color
changed its orientation

1000 ms
Retention Interval

RED +

Filtering Change Localization Paradigm

<<><<

<<><< >><>>

Target: detect which direction the outside
arrows pointed towards (i.e., left in this trial)

Choices: match with the choice that had inside
arrows pointed towards the same direction as the 

outside arrows in the target (i.e., the choice on
the right has a central arrow pointing leftward,

therefore the right choice is correct)

Flanker Square Paradigm

Until Response

<

RIGHT LEFT

Target: detect which direction the arrow
 pointed towards (i.e., left in this trial)

Choices: match with the choice that had the 
matched semantics with the target direction  

 (i.e., the choice on the right side said “LEFT”: 
it matched with the direction of the target arrow,

therefore the right choice is correct)

Simon Square Paradigm

Until Response

(A)

(B)

(C)

(D)

Note. (A) Schema of change localization task. (B) Schema of the filtering change localization task. (C) Schema of the Flanker square
task. (D) Schema of the Simon square task. ITI = intertrial interval. See the online article for the color version of this figure.

12 ZHAO AND VOGEL



between attentional control ability and the number of repetitions.
Alternatively, the rich-get-richer hypothesis would result in a
significant interaction with a positive coefficient, and the slow starter
hypothesis would produce a significantly negative coefficient on the
interaction term. Echoing our previous findings, we discovered that
the interaction between all four attentional control tasks and the
number of repetitions remained not significant (change localization:
β = −0.028, 95% CI [−0.079, 0.023], p = .28; filtering change
localization: β = −0.001, 95% CI [−0.054, 0.051], p = .97; Flanker
square: β < −0.001, 95% CI [−0.001, 0.000], p = .31; Simon
square: <−0.001, 95% CI [−0.001, 0.000], p = .41). Therefore,
the performance advantage for the high attention control subjects
remained constant despite substantial learning across the five

repetitions. In conclusion, the robust predictive power of attentional
control on source memory accuracy, even when participants had
reached a relatively high level of recall performance, contradicted
the prediction of the slow starter hypothesis or rich-get-richer
hypothesis and instead supported the stable demands hypothesis.

Discussion

Our findings reveal that individual differences inWMAC abilities
remain predictive of LTM task performance even after partici-
pants reached asymptote level performance for the visual sequence.
Importantly, individual differences in VWM abilities affected LTM
performance in a source memory task when the visual sequence
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Figure 8
Working Memory and Attentional Control Abilities Predicted the Accuracy in Each Repetition of Verbal Associative Memory List in
Experiment 5
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Note. (A) Visual working memory capacity, measured by change localization task, positively correlated to the mean accuracy of source memory task
performance for all five repetitions. (B) Working memory and attentional control abilities, measured by filtering change localization task, positively correlated
to the mean accuracy of source memory task performance for all five repetitions. (C) Attentional control abilities, measured by Flanker square task, positively
correlated to the mean accuracy of source memory task performance for all five repetitions. (D) Attentional control abilities, measured by Simon square task,
positively correlated to the mean accuracy of source memory task performance for all five repetitions. See the online article for the color version of this figure.
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was learned five times (Experiment 1), 12 times (Experiment 2),
or 12 times with different orders of encoding (Experiment 3).
Moreover, we generalized our findings into the domain of verbal
LTM, arguing that differential working memory abilities consis-
tently resulted in differences in retrieval accuracy of verbal paired
associates throughout repetitive learning (Experiment 4). Finally,
we also showed that WMAC abilities, measured with four highly
reliable tasks, continued to be predictive of performance throughout
learning (Experiment 5). Our results from all five experiments reject
the slow starter hypothesis, in that we did not observe a decrease
in WMAC requirement as expertise built up. Instead, we observed
sustained (Experiments 1, 2, 3, and 5), or even slightly increasing
(Experiment 4), involvement of WMAC as people repeatedly learned
the test materials. Instead, our findings mostly supported an alter-
native hypothesis, the stable demands hypothesis, which domain-
general attentional control abilities may affect domain-specific LTM
performance even after repetitive learning.
One potential explanation of why performing a well-trained task

may feel less attention demanding is that training may allow one
to more efficiently deploy attention in a task-effective manner as
compared to novices. Instead of no longer relying on attentional
control abilities, trained participants may develop certain strategies
that allow them to focus their visual attention more efficiently
on task-relevant contents. For instance, expert athletes have been
shown to have better domain-general laboratory-monitored atten-
tional task performance (Voss et al., 2010). The transfer of domain-
specific expertise to domain-general advantages in attentional abilities
supported our stable demands view of learning in that trained partici-
pants practiced to better utilize attentional resources, not getting
less reliance on visual attention. One result of the stable demands
hypothesis was a more compressed way to encode and decode
visual information as participants learnt the materials repetitively. For
instance, a study that compared eye scan path between experienced
and novice drivers suggested that experienced drivers had a way
higher variance in eye fixations than novice drivers during complex
road situation, suggesting that they allocated their attention more
efficiently than novices (Underwood, 2007). Additionally, another
large-scale study used a mobile application game that trained
participants to search for hazards from mock airport scans (Ericson
et al., 2017). In their data set, thousands of participants were trained
over an extended period of time, and they were awarded one of the
three achievement levels, pro, elite, or expert, depending on their
reaction time in this game. With massive number of trials and
participants, they showed that people’s first trial reaction time could
predict their eventual achievement level. Since attentional control
affected both first and eventual performance, our stable demands
hypothesis suggested that the predictive power of first trial reaction
time may result from the stable demands of attentional control even
when players repeatedly practiced. Thus, empirical evidence with
real-world expertise supports our stable demands hypothesis.
Although domain-general WMAC abilities predict source memory

performance during learning, they surprisingly did not predict learning
rate. This general finding contradicts models that propose that high
attention control abilities can acquire task performance at a faster rate
than those with low attention control, namely the rich-get-richer
hypothesis (Hambrick & Engle, 2002; Meinz & Hambrick, 2010).
As depicted in Figure 4, we modeled the learning slopes of 700
participants across the five repetitions in Experiment 1. We revealed
that there were substantial individual differences in learning slopes

and that these slope estimates were highly reliable. However, despite
these necessary psychometric properties, we saw no relationship
between an individual’s learning slope and his or her attention
control ability. That is, we observed that the learning slopes for the
high and low attention control groups are essentially parallel to each
other across learning, suggesting that people with higher attentional
control abilities did not learn faster than those with worse attentional
control, despite starting at a higher level of performance. The
differential effect of attentional control on increasing LTM accuracy
but not learning speed appears to suggest that learning rate may
be independent of attention control. However, future studies will
be needed to investigate whether individual differences in learning
rates reflect a general psychological construct (Zerr et al., 2018).

Our support for the stable demands hypothesis aligns with prior
work examining Aptitude × Treatment interactions (e.g., Kaufman
et al., 2009) but diverges with the conclusions of other work in that
area (Ackerman, 1987; B. A. Williams & Pearlberg, 2006). Perhaps
a potential reason for the discrepancy may lie in the types of learning
tasks used in each of these studies. In a sequence learning task, such
as three-term contingency tasks, aptitude plays an increasing role
across learning, thereby supporting the rich-get-richer hypothesis
(B. A. Williams & Pearlberg, 2006). In contrast, in simple motor
tasks that use reaction time as a performance metric, the Aptitude ×
Treatment interaction aligns with the slow starter hypothesis, where
lower intelligence subjects catch upwith more repetitions (Ackerman,
1987). Finally, our stable demands hypothesis is supported by prior
findings from associative learning tasks (Kaufman et al., 2009). In the
present work, our visual and verbal learning tasks are arguably most
comparable to the paired-associate learning task used in Kaufman
et al. (2009), and our results similarly align with their conclusion
supporting a stable demands hypothesis. However, considering that in
each of these studies, there was no single task battery that included
sequence learning, motor learning, and paired-associate learning,
future research is needed to determine whether the type of learning
influences aptitude–treatment interactions. In addition to the types
of learning, the measures of aptitude in the skill learning literature
were mixed, while our focus of cognitive abilities was on attentional
control and working memory. For example, Ackerman (1987) used
initial task performance as a proxy for general cognitive abilities, but
the high autocorrelation between performance in early and later
stages of skill learning likely confounded these aptitude measures
more than our attentional control metrics. Therefore, the variety of the
general cognitive ability measures used in the literature may result in
mixed results on the relationship between aptitude and treatment (i.e.,
learning). Last, even in studies with aptitude measures more closely
aligned to attentional control and working memory, smaller sample
sizes increase vulnerability to outliers. For instance, in B. A.Williams
and Pearlberg (2006), the sample sizes of 98 and 60 across their two
experiments left their Raven × Treatment interactions positioned
ambiguously between predictions of the rich-get-richer and stable
demands hypotheses. In measuring the domain-general attentional
control and working memory abilities, we used the change detection
task in Experiments 1–4 and a battery of four WMAC tasks in
Experiment 5. We showed that working memory abilities constantly
predicted performance across repetitions (Experiments 1–4), and
attentional control task also similarly constantly predicted perfor-
mance with learning (Experiment 5). A related ongoing debate in the
field questions whether attentional control abilities form a unitary
construct (Kane et al., 2004) or instead reflect distinct underlying
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constructs. One example of the distinct process model, the model
of executive function, proposes that three different components,
inhibition, updating, and switching, account for individual differences
in complex “frontal lobe” tasks (Miyake et al., 2000). Alternatively, a
dual mechanism view of cognitive control suggests that partici-
pants may use either proactive or retroactive attention in performing
task (Braver, 2012). Additionally, one multidimensional model of
working memory subdivided the process of working memory into
the binding, updating, and removal of information from the focus
of attention (Oberauer, 2019). In our study, we found that the stable
demands hypothesis generalized fromworkingmemory tomeasures of
attentional control abilities, which suggests that these differences may
be drawn from mechanisms that are in common between these two
constructs. Although it is beyond the scope of the current work to
discern whether attentional control abilities are better explained by a
unitary or multifaceted construct of attention control, future studies
will be needed to examine the finer relationship between attentional
control and learning with more tasks that selectively tap onto each
process defined by these distinct models.
In conclusion, we did not observe a decrease in attentional control

requirements as participants repeatedly practiced visual and visual
materials. Instead, we observed sustained or even increasing involve-
ment of attentional control as people repeatedly learned the test
materials, supporting the stable demands hypothesis. Our data support
the hypothesis that domain-general cognitive abilities do impact the
development of domain-specific performance. Furthermore, our stable
demands of attention view of expertise suggest that well-trained
individuals may not rely less on attention control abilities but rather
develop strategies that allow them to deploy attention more efficiently
to task-relevant information. Although domain-general attention
control ability predicts source memory throughout learning, they
surprisingly did not predict learning rate. This finding suggests that
learning rate may be independent of attention control ability. Finally,
our work hinted that attentional control abilities may play a role in
expertise development. Although wemade attempt to train participants
with in-lab tasks to an asymptote performance, we did not train our
participants with complex tasks over an extended period of time.
Future studies should be directed at examining whether individual
differences in attentional control abilities predict expertise perfor-
mance in various domains with real-world tasks (Ericson et al.,
2017). Furthermore, while the goal of our work was to examine the
initial phases of learning, our result may have implications for the
development of expertise. Prior expertise studies in real-world
settings often involve months to years of training eventually leading
to automatized performance, with a common assumption being that
general cognitive ability no longer predicts performance once the
individual has reached an expert level (Ericsson et al., 1993).
However, recent findings have challenged this assumption and
instead proposed that innate cognitive abilities, including attentional
control, continue to explain significant variance in expert perfor-
mance even when the effect of deliberate practice was controlled
for (Hambrick & Engle, 2002; Hambrick et al., 2014; Meinz &
Hambrick, 2010). Although beyond the scope of our present study,
further research is needed to determine whether attentional control
and working memory abilities continue to play a role once the task
performance becomes more automatized. Overall, our results help
demonstrate the persisting role of individual differences in WMAC
in contributing to domain-specific learning.

Constraints of Generality

Our experiments used real-world objects (Experiments 1–3 and
5) as well as words as our stimuli (Experiment 4). We replicated our
key findings that working memory capacity as well as attentional
control abilities consistently predicted memory performance with
repetitions but not the rate of learning. Therefore, we expect our key
findings to generalize to a wide range of visual and verbal stimuli.
Furthermore, our experiments contained online participants from
Prolific. Therefore, we believe that our results are generalizable to
samples of human populations in real life outside of laboratory
settings.
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